Review of the deep learning for food image processing
Abstract
Keywords: deep learning, food image processing, feature extraction, dietary health
DOI: 10.25165/j.ijabe.20241705.8975
Citation: Niu C R, Ying X Y, Pei G, Hu M H, Zhai G T. Review of the deep learning for food image processing. Int J Agric & Biol Eng, 2024; 17(5): 14-29.
Keywords
Full Text:
PDFReferences
Havelaar A H, Kirk M D, Torgerson P R, Gibb H J, Hald T, Lake R J, et al. World health organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Medicine, 2015; 12(12): e1001923.
Fung F, Wang H S, Menon S. Food safety in the 21st century. Biomedical Journal, 2018; 41(2): 88–95.
Manasa H S, Mahadevaswamy R K. Obesity and its effects on health. Saudi J Nurs Health Care, 2023; 6(1): 16–17.
Honce R, Schultz-Cherry S. A tale of two pandemics: Obesity and Covid-19. Journal of Travel Medicine, 2020; 27(5): taaa097.
Daniels N F, Burrin C, Chan T, Fusco F. A systematic review of the impact of the first year of covid-19 on obesity risk factors: A pandemic fueling a pandemic? Current Developments in Nutrition, 2022; 6(4): nzac011.
Das M. WHO urges immediate action to tackle noncommunicable diseases. The Lancet Oncology, 2022; 23(11): 1361.
Mayen A-L, Aglago E K, Knaze V, Cordova R, Schalkwijk C G, Wagner K H, et al. Dietary intake of advanced glycation endproducts and risk of hepatobiliary cancers: A multinational cohort study. International Journal of Cancer, 2021; 149(4): 854–864.
Ji X-W, Wang J, Shen Q-M, Li Z-Y, Jiang Y-F, Liu D-K, et al. Dietary fat intake and liver cancer incidence: A population-based cohort study in Chinese men. International Journal of Cancer, 2021; 148(12): 2982–2996.
Steck S E, Murphy E A. Dietary patterns and cancer risk. Nature Reviews Cancer, 2020; 20(2): 125–138.
Huang C C. Special issue on deep learning-based neural information processing for big data analytics. Neural Computing and Applications, 2020; 32(6): 1513–1515.
Lin Y D, Ma J, Cheng J-H, Sun D-W. Visible detection of chilled beef freshness using a paper-based colourimetric sensor array combining with deep learning algorithms. Food Chemistry, 2024; 441: 138344.
Panesar A. Artificial intelligence and machine learning in precision health. In: Precision Health and Artificial Intelligence. Panesar A (Ed.). Berkeley: Apress. 2023; pp.67–85. doi: 10.1007/978-1-4842-9162-7_4.
Graves M, Smith A, Batchelor B. Approaches to foreign body detection in foods. Trends in Food Science and Technology, 1998; 9: 21–27.
Kumar G, Bhatia P K. A detailed review of feature extraction in image processing systems. In: IEEE Fourth International Conference on Advanced Computing & Communication Technologies, Rohtak, Haryana, India: IEEE, 2014; pp.5–12.
Davies E R. Image processing for the food industry. World Scientific Press. 2000; 312p. doi: 10.1142/4182.
Ming Z-Y, Chen J J, Cao Y, Forde C, Ngo C-W, Chua T S. Food photo recognition for dietary tracking: System and experiment. In: 24th International Conference on Multi Media Modelling (MMM), Bangkok, Thailand: Springer, 2018; pp.129–141.
Kong F Y, Tan J D. Dietcam: Automatic dietary assessment with mobile camera phones. Pervasive and Mobile Computing, 2012; 8(1): 147–163.
Meyers A, Johnston N, Rathod V, Korattikara A, Gorban A, Silberman N, et al. Im2calories: Towards an automated mobile vision food diary. In: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile: IEEE, 2015; pp.1233–1241.
Jacobs Jr C G. Challenges to the quality of data quality measures. Food Chemistry, 2009; 113(3): 754–758.
Min W Q, Wang Z L, Liu Y X, Luo M J, Kang L P, Wei X M, et al. Large scale visual food recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023; 45(8): 9932–9949.
Chen M, Dhingra K, Wu W, Yang L, Sukthankar R, Yang J. Pfid: Pittsburgh fast-food image dataset. In: 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt: IEEE, 2009; pp.289–292.
Hoashi H, Joutou T, Yanai K. Image recognition of 85 food categories by feature fusion. In: 2010 IEEE International Symposium on Multimedia, Taichung, Taiwan: IEEE, 2010; pp.296–301.
Matsuda Y, Yanai K. Multiple-food recognition considering co-occurrence employing manifold ranking. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan: IEEE, 2012; pp.2017–2020.
Kawano Y, Yanai K. Automatic expansion of a food image dataset leveraging existing categories with domain adaptation. In: Computer Vision-ECCV 2014 Workshops, Zurich, Switzerland: Springer, 2015; pp.3–17.
Bossard L, Guillaumin M, Van Gool L. Food101 - mining discriminative components with random forests. In: Computer Vision–ECCV 2014. Zurich, Switzerland: Springer, 2014; pp.446–461.
Chen X, Zhu Y, Zhou H, Diao L, Wang D. Chinese foodnet: A large-scale image dataset for Chinese food recognition. arXiv preprint arXiv: 1705.02743, 2017; In press. doi: 10.48550/arXiv.1705.02743.
Kaur P, Sikka K, Wang W, Belongie S, Divakaran A. Foodx-251: A dataset for fine-grained food classification. arXiv preprint arXiv: 1907.06167, 2019; doi: 10.48550/arXiv.1907.06167.
Sahoo D, Hao W, Ke S, Wu X W, Le H. Foodai: Food image recognition via deep learning for smart food logging. In: ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA: Association for Computing Machinery, 2019; pp.2260–2268.
Deng J, Dong W, Socher R, Li L-J, Li K, Li F F. Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA: IEEE, 2009; pp.248–255.
Liu C, Guo C, Dakota D, Rajagopalan S, Li W, Kübler S, et al. My curiosity was satisfied, but not in a good way”: Predicting user ratings for online recipes. In: Proceedings of the Second Workshop on Natural Language Processing for Social Media (SocialNLP), Dublin, Ireland: Association for Computational Linguistics and Dublin City University, 2014; pp.12–21.
Marín J, Biswas A, Ofli F, Hynes N, Salvador A, Aytar Y, et al. Recipe1m+: A dataset for learning cross-modal embeddings for cooking recipes and food images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021; 43(1): 187–203.
Xia X J, Liu W, Wang L A, Sun J. Hsifoodingr-64: A dataset for hyperspectral food-related studies and a benchmark method on food ingredient retrieval. IEEE Access, 2023; 11: 13152–13162.
Joutou T, Yanai K. A food image recognition system with multiple kernel learning. In: 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt: IEEE, 2009; pp.285–288.
Miyazaki T, de Silva G C, Aizawa K. Imagebased calorie content estimation for dietary assessment. In: 2011 IEEE International Symposium on Multimedia, Dana Point, CA, USA: IEEE, 2011; pp.363–368.
Stutz T, Dinic R, Domhardt M, Ginzinger S. Can mobile augmented reality systems assist in portion estimation? A user study. In: 2014 IEEE international symposium on mixed and augmented reality-media, art, social science, humanities and design (ISMAR-MASH’D), Munich, Germany: IEEE, 2014; pp.51–57.
Farinella G M, Allegra D. Stanco F. A benchmark dataset to study the representation of food images. In: Computer Vision - ECCV 2014 Workshops, Springer, Cham, 2015; pp.584–599. doi: 10.1007/978-3-319-16199-0_41.
Ciocca G, Napoletano P, Schettini R. Food recognition and leftover estimation for daily diet monitoring. In: New Trends in Image Analysis and Processing - ICIAP 2015 Workshops: ICIAP 2015, Genoa, Italy, Springer, 2015; pp.334–341.
Wang X, Kumar D, Thome N, Cord M, Precioso F. Recipe recognition with large multimodal food dataset. In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Turin: IEEE, 2015; pp.1–6.
Fang S, Liu C, Zhu F, Delp E J, Boushey C J. Single-view food portion estimation based on geometric models. In: 2015 IEEE International Symposium on Multimedia (ISM), Miami, FL, USA: IEEE, 2015; pp.385–390.
Xu R J, Herranz L, Jiang S Q, Wang S, Song X H, Jain R. Geolocalized modeling for dish recognition. IEEE Transactions on Multimedia, 2015; 17(8): 1187–1199.
Beijbom O, Joshi N, Morris D, Saponas S, Khullar S. Menu-match: Restaurant-specific food logging from images. In: 2015 IEEE Winter Conference on Applications of Computer Vision, Waikoloa: IEEE, 2015; pp.844–851.
Zhou F, Lin Y Q. Fine-grained image classification by exploring bipartite-graph labels. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016; pp.1124–1133.
Chen J, Ngo C-W. Deep-based ingredient recognition for cooking recipe retrieval. In: Proceedings of the 24th ACM international conference on Multimedia, New York: Association for Computing Machinery, 2016; pp.32–41.
Ciocca G, Napoletano P, Schettini R. Food recognition: A new dataset, experiments, and results. IEEE Journal of Biomedical and Health Informatics, 2016; 21(3): 588–598.
Merler M, Wu H, Uceda-Sosa R, Nguyen Q-B, Smith J R. Snap, eat, repeat: A food recognition engine for dietary logging. In: Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management, New York, NY, USA: Association for Computing Machinery, 2016; pp.31–40.
Singla A, Yuan L, Ebrahimi T. Food/non-food image classification and food categorization using pretrained googlenet model. In: Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management, New York, NY, USA: Association for Computing Machinery, 2016; pp.3–11.
Farinella G M, Allegra D, Moltisanti M, Stanco F, Battiato S. Retrieval and classification of food images. Computers in Biology and Medicine, 2016; 77: 23–39.
Ciocca G, Napoletano P, Schettini R. CNN-based features for retrieval and classification of food images. Computer Vision and Image Understanding, 2018, 176–177: 70–77.
Rich J, Haddadi H, Hospedales T M. Towards bottom-up analysis of social food. In: Proceedings of the 6th International Conference on Digital Health Conference, New York, NY, USA: Association for Computing Machinery, 2016; pp.111–120.
Liang Y C, Li J H. Computer vision-based food calorie estimation: Dataset, method, and experiment. arXiv preprint arXiv: 1705.07632, 2017; In press. doi: 10.48550/arXiv.1705.07632.
Güngör C, Baltacı F, Erdem A, Erdem E. Turkish cuisine: A benchmark dataset with turkish meals for food recognition. In: 2017 25th Signal Processing and Communications Applications Conference (SIU), Antalya, Turkey: IEEE, 2017; pp.1–4.
Pandey P, Deepthi A, Mandal B, Puhan N B. Foodnet: Recognizing foods using ensemble of deep networks. IEEE Signal Processing Letters, 2017; 24(12): 1758–1762.
Termritthikun C, Muneesawang P, Kanprachar S. “Nu-Innet: Thai food image recognition using convolutional neural networks on smartphone. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 2017; 9(2-6): 63–67.
Hou S, Feng Y, Wang Z. Vegfru: A domainspecific dataset for fine-grained visual categorization. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy: IEEE, 2017; pp.541–549.
Waltner G, Schwarz M, Ladstatter S, Weber A, Luley P, Lindschinger M, et al. Personalized dietary self-management using mobile visionbased assistance. In: New Trends in Image Analysis and Processing–ICIAP 2017: ICIAP International Workshops, Catania, Italy: Springer, 2017; pp.385–393.
Muresan H, Oltean M. Fruit recognition from images using deep learning. Acta Universitatis Sapientiae, Informatica, 2018; 10(1): 26–42.
Min W Q, Liu L H, Wang Z L, Luo Z D, Wei X M, Wei X L, et al. Isia food-500: A dataset for large-scale food recognition via stacked global-local attention network. In: Proceedings of the 28th ACM International Conference on Multimedia. ACM New York, NY, USA: Association for Computing Machinery, 2020; pp.393–401.
Chen J J, Zhu B, Ngo C-W, Chua T-S, Jiang Y-G. A study of multi-task and region-wise deep learning for food ingredient recognition. IEEE Transactions on Image Processing, 2020; 30: 1514–1526.
Okamoto K, Yanai K. Uec-foodpix complete: A large-scale food image segmentation dataset. In: Pattern Recognition. ICPR International Workshops and Challenges, Springer, Cham, 2021, pp.647–659. doi: 10.1007/978-3-030-68821-9_51.
Ma P, Lau C P, Yu N, Li A, Liu P, Wang Q, et al. Image-based nutrient estimation for chinese dishes using deep learning. Food Research International, 2021; 147: 110437.
Ma P H, Lau C P, Yu N, Li A, Sheng J P. Application of deep learning for image-based chinese market food nutrients estimation. Food Chemistry, 2022; 373: 130994.
Fan B K, Li W Q, Dong L, Li J Z, Nie Z D. Automatic chinese food recognition based on a stacking fusion model. In: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia: IEEE, 2023; pp.1–4.
Karabay A, Bolatov A, Varol H A, Chan M-Y. A central asian food dataset for personalized dietary interventions. Nutrients, 2023; 15(7): 1728.
Rong D, Xie L J, Ying Y B. Computer vision detection of foreign objects in walnuts using deep learning. Computers and Electronics in Agriculture, 2019; 162: 1001–1010.
Memis S, Arslan B, Batur O Z, Sonmez E B. A comparative study of deep learning methods on food classification problem. In: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), Istanbul, Turkey: IEEE, 2020; pp.1–4.
Ghosh T, Sazonov E. A comparative study of deep learning algorithms for detecting food intake. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, United Kingdom: IEEE, 2022; pp.2993–2996.
Yang X F, Ye Y M, Li X T, Lau R Y K, Zhang X F, Huang X H. Hyperspectral image classification with deep learning models. IEEE Transactions on Geoscience and Remote Sensing, 2018; 56(9): 5408–5423.
Siemon M S N, Shihavuddin A S M, Ravn-Haren G. Sequential transfer learning based on hierarchical clustering for improved performance in deep learning based food segmentation. Scientific Reports, 2021; 11(1): 813.
Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al. Segment anything. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023; pp.4015–4026.
Ravi N, Gabeur V, Hu Y T, Hu R H, Ryali C, Ma T Y, et al. Sam 2: Segment anything in images and videos. arXiv: 2408.00714, 2024. doi: 10.48550/arXiv.2408.00714.
Zhu Y H, Liu L H, Tian J. Learn more for food recognition via progressive self-distillation. Proceedings of the AAAI Conference on Artificial Intelligence, 2023; 37: 3879–3887.
Tan S W, Lee C P, Lim K M, Lim J Y. Food detection and recognition with deep learning: A comparative study. In: 2023 11th International Conference on Information and Communication Technology (ICoICT), Melaka, Malaysia: IEEE, 2023; pp.283–288.
Saritha R R, Paul V, Kumar P G. Content based image retrieval using deep learning process. Cluster Computing, 2019; 22: 4187–4200.
Dubey S R. A decade survey of content based image retrieval using deep learning. IEEE Transactions on Circuits and Systems for Video Technology, 2021; 32(5): 2687–2704.
Konstantakopoulos F S, Georga E I, Fotiadis D I. A review of image-based food recognition and volume estimation artificial intelligence systems. IEEE Reviews in Biomedical Engineering, 2023; 17: 136–152.
Wei P C, Wang B. Food image classification and image retrieval based on visual features and machine learning. Multimedia Systems, 2022; 28: 2053–2064.
Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002; 24(7): 971–987.
Lowe D G. Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 2004; 60: 91–110.
Jain A K, Farrokhnia F. Unsupervised texture segmentation using gabor filters. Pattern recognition, 1991; 24(12): 1167–1186.
Yang S L, Chen M, Pomerleau D, Sukthankar R. Food recognition using statistics of pairwise local features. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco: IEEE, 2010; pp.2249–2256.
Chen M-Y, Yang Y-H, Ho C-J, Wang S-H, Liu S-M, Chang Y, et al. Automatic Chinese food identification and quantity estimation. SIGGRAPH Asia 2012 Technical Briefs, 2012; 1–4. doi: 10.1145/2407746.240777.
Anthimopoulos M M, Gianola L, Scarnato L, Diem P, Mougiakakou S G. A food recognition system for diabetic patients based on an optimized bag-of-features model. IEEE Journal of Biomedical and Health Informatics, 2014; 18(4): 1261–1271.
Oliveira L, Costa V, Neves G, Oliveira T, Jorge E, Lizarraga M. A mobile, lightweight, poll-based food identification system. Pattern Recognition, 2014; 47(5): 1941–1952.
Kawano Y, Yanai K. Foodcam-256: A largescale real-time mobile food recognitionsystem employing high-dimensional features and compression of classifier weights. In: Proceedings of the 22nd ACM international conference on Multimedia, New York, NY, USA: Association for Computing Machinery, 2014; pp.761–762.
Tammachat N, Pantuwong N. Calories analysis of food intake using image recognition. In: 2014 6th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia: IEEE, 2014; pp.1–4.
He Y, Xu C, Khanna N, Boushey C J, Delp E J. Analysis of food images: Features and classification. In: 2014 IEEE international conference on image processing (ICIP), Paris, France: IEEE, 2014; pp.2744–2748.
Abdulrahman A, Ozeki T. Food image recognition by using bag of surf: Color features. In: Proceedings of the 3rd International Conference on Human-Agent Interaction, New York: Association for Computing Machinery, 2015; pp.207–208. doi: 10.1145/2814940.2814976.
Ahsani A F, Sari Y A, Adikara P P. Food image retrieval with gray level co-occurrence matrix texture feature and cie l* a* b* color moments feature. In: 2019 International Conference on Sustainable Information Engineering and Technology (SIET), Lombok, Indonesia: IEEE, 2019; pp.130–134.
Mezgec S, Koroušić Seljak B. Nutrinet: A deep learning food and drink image recognition system for dietary assessment. Nutrients, 2017; 9(7): 657.
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017; 60(6): 84–90.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2015. doi: 10.48550/arXiv.1409.1556.
Azizpour H, Sharif Razavian A, Sullivan J, Maki A, Carlsson S. From generic to specific deep representations for visual recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA: IEEE, 2015; pp.36–45.
Kagaya H, Aizawa K, Ogawa M. Food detection and recognition using convolutional neural network. In: Proceedings of the 22nd ACM international conference on Multimedia, New York, NY, USA: Association for Computing Machinery, 2014; pp.1085–1088.
Wu Y Q, Song X, Chen J J. Few-shot food recognition with pre-trained model. In: Proceedings of the 1st International Workshop on Multimedia for Cooking, Eating, and related APPlications, New York, NY, USA: Association for Computing Machinery, 2022; pp.45–48.
Xiong Y M. Food image recognition based on ResNet. Applied and Computational Engineering, 2023; 8: 20230284.
Cai L Z, Tang L M, Lim S. Transfer learning with deep models for small food datasets. In: International Conference on Automation Control, Algorithm, and Intelligent Bionics (ACAIB 2023), Xiamen, China, 2023. doi: 10.1117/12.2686482.
Al-Rubaye D A, Ayvaz S. Deep transfer learning and data augmentation for food image classification. In: 2022 Iraqi International Conference on Communication and Information Technologies, Basrah, Iraq, 2022; pp.125–130.
Dao H N, Quang T N, Paik I. Transfer learning for medical image classification on multiple datasets using PubMedCLIP. In: 2022 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Yeosu, Korea: IEEE, 2022; pp.1–4.
Yanai K, Kawano Y. Food image recognition using deep convolutional network with pre-training and fine-tuning. In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Turin, Italy: IEEE, 2015; pp.1–6.
Zhu L, Li Z B, Li C, Wu J, Yue J. High performance vegetable classification from images based on AlexNet deep learning model. Int J Agric & Biol Eng, 2018; 11(4): 217–223.
Pehlic A, Abd Almisreb A, Kunovac M, Skopljak E, Begovic M. Deep transfer learning for food recognition. Southeast Europe Journal of Soft Computing, 2019; 8(2): 182.
Sun J, Radecka K, Zilic Z. Exploring better food detection via transfer learning. In: 2019 16th International Conference on Machine Vision Applications (MVA), Tokyo, Japan: IEEE, 2019; pp.1–6.
Gadhiya J, Khatik A, Kodinariya S, Ramoliya D. Classification of regional food using pre-trained transfer learning models. In: 2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India: IEEE, 2023, pp.1237–1241.
Wiatowski T, Bölcskei H. A mathematical theory of deep convolutional neural networks for feature extraction. IEEE Transactions on Information Theory, 2018; 64: 1845–1866.
Metwalli A-S, Shen W, Wu C Q. Food image recognition based on densely connected convolutional neural networks. In: 2020 international conference on artificial intelligence in information and communication (ICAIIC), Fukuoka, Japan: IEEE, 2020; pp.27–32.
Panitchakorn G, Limpiyakorn Y. Convolutional neural networks for artificial marbling beef classification. In: 2021 10th International Conference on Internet Computing for Science and Engineering, New York, NY, USA: Association for Computing Machinery, 2021; pp.101–104.
Chen X, Zhang Y, Xu H, Qin Z, Zha H. Adversarial distillation for efficient recommendation with external knowledge. Transactions on Information Systems (TOIS), 2018; 37(1): 1–28.
Marra G, Giannini F, Diligenti M, Gori M. Integrating learning and reasoning with deep logic models. In: Brefeld U, Fromont E, Hotho A, Knobbe A, Maathuis M, Robardet C. (eds), Machine Learning and Knowledge Discovery in Databases. Springer, Cham. 2019, pp.517–532. doi: 10.1007/978-3-030-46147-8_31.
Xie X Z, Niu J W, Liu X F, Chen Z S, Tang S J, Yu S. A survey on incorporating domain knowledge into deep learning for medical image analysis. Medical Image Analysis, 2021; 69: 101985.
Herranz L, Jiang S Q, Xu R H. Modeling restaurant context for food recognition. IEEE Transactions on Multimedia, 2016; 19(2): 430–440.
Tian Y H. Artificial intelligence image recognition method based on convolutional neural network algorithm. IEEE Access, 2020; 8: 125731–125744.
Jiang L D, Qiu B J, Liu X, Huang C X, Lin K H. Deepfood: Food image analysis and dietary assessment via deep model. IEEE Access, 2020; 8: 47477–47489.
Song G, Tao Z, Huang X, Cao G, Liu W, Yang L. Hybrid attention-based prototypical network for unfamiliar restaurant food image few-shot recognition. IEEE Access, 2020; 8: 14893–14900.
Lohala S, Alsadoon A, Prasad P, Ali R S, Altaay A J. A novel deep learning neural network for fast-food image classification and prediction using modified loss function. Multimedia Tools and Applications, 2021; 80(17): 25453–25476.
Wang C Y, Liu B H, Liu L P, Zhu Y J, Hou J L, Liu P, et al. A review of deep learning used in the hyperspectral image analysis for agriculture. Artificial Intelligence Review, 2021; 54(7): 5205–5253.
He Z, Zhang Z, Feng G, Yan Z, Yi L, Yi Z, et al, Dishes recognition system based on deep learning. Academic Journal of Computing & Information Science, 2022; 5(2): 48–53.
Zhou P F, Min W Q, Song J J, Zhang Y, Jiang S Q. Synthesizing knowledge-enhanced features for real-world zero-shot food detection. IEEE Transactions on Image Processing, 2024; 33: 1285–1298.
Chen C-S, Chen G-Y, Zhou D, Jiang D, Chen D-S, Res-vmamba: Fine-grained food category visual classification using selective state space models with deep residual learning. arXiv: 2402.15761, 2024. doi: 10.48550/arXiv.2402.15761.
Song X F, Zou Y, Shi Z, Yang Y F. Image matching and localization based on fusion of handcrafted and deep features. IEEE Sensors Journal, 2023; 23(19): 22967–22983.
Arifuzzaman M, Hasan M R, Toma T J, Hassan S B, Paul A K. An advanced decision tree-based deep neural network in nonlinear data classification. Technologies, 2023; 11(1): 24.
Ciapas B, Treigys P. Automated barcodeless product classifier for food retail self-checkout images. The Visual Computer, 2024; 40: 6245–6259.
Antela K U, Sáez-Hernández R, Morales-Rubio A, Cervera M L, Luque M J. Smartphone-based procedure to determine content of single synthetic dyes in food using the arata-possetto extraction method. Talanta, 2024; 270: 125537.
Saadati M. Smartphone-based digital image analysis for determination of some food dyes in commercial products. Food Analytical Methods, 2021; 14: 2367–2374.
Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W J, Weyand T et al. Mo-bileNets: Efficient convolutional neural networks for mobile vision applications. arXiv: 1704.04861, 2017. doi: 10.48550/arXiv.1704.04861.
Tan M X, Le Q C. EfficientNet: Rethinking model scaling for convolutional neural networks. arXiv: 1905.11946v5, 2019, doi: 10.48550/arXiv.1905.11946.
Min W Q, Jiang S Q, Sang J T, Wang H Y, Liu X D, Herranz L. Being a supercook: Joint food attributes and multimodal content modeling for recipe retrieval and exploration. IEEE transactions on multimedia, 2016; 19(5): 1100–1113.
Zhao H, Yap K-H, Kot A C. Fusion learning using semantics and graph convolutional network for visual food recognition. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA: IEEE, 2021; pp.1710–1719.
Dehais J, Anthimopoulos M, Shevchik S, Mougiakakou S, et al. Two-view 3D reconstruction for food volume estimation. IEEE transactions on multimedia, 2016; 19(5): 1090–1099.
Naritomi S, Yanai K. Real scale hungry networks: Real scale 3D reconstruction of a dish and a plate using implicit function and a single RGB-D image. In: Proceedings of the 7th International Workshop on Multimedia Assisted Dietary Management, New York, NY, USA: Association for Computing Machinery, 2022; pp.3–10.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.