Research progress in biomass conversion technology and its product application

Authors

  • Weijuan Lan School of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
  • Yanqing Yang School of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
  • Xinxin Zhao School of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
  • Hongwei Cui School of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
  • Xin Jin School of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
  • Dongxue Yin School of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
  • Jiawei Wang Department of Chemical Engineering, Swansea University, Bay Campus, Swansea, 8 SA1 8EN, UK
  • Jiangtao Ji College of Agricultural Equipment Engineering, Henan University of Science and Technology
  • Junjie Zhang School of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China

DOI:

https://doi.org/10.25165/ijabe.v18i4.8999

Keywords:

biomass, biochemical conversion, thermochemical conversion, syngas, biochar, product applications

Abstract

Rapid  economic  growth  since  the  turn  of  the  century  has  often  been  accompanied  by  significant challenges, including fossil fuel depletion, environmental degradation, and energy security concerns. Urgent measures are essential to promote  environmentally  friendly  advancements  and  adopt  sustainable  energy  solutions.  Biomass  energy, an important component of renewable energy, stands out as the sole renewable energy source containing carbon and has attracted significant attention from governments and the scientific community worldwide. Attention to biomass conversion technologies and their practical applications has gradually increased. This paper provides an in-depth analysis of the utilization of biomass and its wastes,  and  systematically  introduces  the  progress  of  the  application  of  biomass  conversion  technologies,  including biochemical and thermochemical conversion, to provide readers with a clear picture of the technological development. By meticulously summarizing the current status of the application of different products produced by these technologies, it provides a valuable reference for researchers and practitioners in the field of biomass energy, aiming to meet the challenges of clean energy production and biomass waste management, and to mitigate the adverse impacts of human activities on the environment. In addition, this paper explores the application of machine learning in the field of biomass conversion, especially its potential in optimizing the biomass conversion process, improving the accuracy of energy yield prediction, and enhancing process control. Despite challenges such as data quality and model interpretability, developments in machine learning, particularly advances in feature engineering and interpretable AI, promise to address these issues. This study contributes positively to advancing biomass energy technologies. Keywords: biomass, biochemical conversion, thermochemical conversion, syngas, biochar, product applications DOI: 10.25165/j.ijabe.20251804.8999 Citation: Lan W J, Yang Y Q, Zhao X X, Cui H W, Jin X, Yin D X, et al. Research progress in biomass conversion technology and its product application. Int J Agric & Biol Eng, 2025; 18(4): 1–16.

Author Biography

Jiangtao Ji, College of Agricultural Equipment Engineering, Henan University of Science and Technology

College of Agricultural Equipment Engineering, Henan University of Science and Technology; Professor

References

Moodley P. 1-Sustainable biofuels: opportunities and challenges. In: Ray R C (Ed. ). In: Applied Biotechnology Reviews. Amsterdam: Elsevier. 2021; pp.1–20.

Jiang J C. Prospect on research and development of biomass energy utilization. Chemistry and Industry of Forest Products, 2002(2): 75–80. (in Chinese)

Wang X F. Discussion on the application of biomass energy conversion technology. Energy Science and Technology, 2022(12): 19–20. (in Chinese)

Kumar A, Kumar K, Kaushik N, Sharma S, Mishra S. Renewable energy in India: Current status and future potentials. Renewable and Sustainable Energy Reviews, 2010; 14(7): 2434–2442.

Zhang G P, Wang Y H. Application status and prospect of biomass conversion technology in China. Journal of Anhui Agricultural Sciences, 2023; 51(17): 1–5, 10. (in Chinese)

Sikarwar V S, Zhao M, Fennell P S, Shah N, Anthony E J. Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 2017; 61: 189–248.

Fakayode O A, Aboagarib E A A, Yan D, Li M, Wahia H, Mustapha A T, et al. Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: Parametric screening and optimization via response surface methodology. Energy, 2020; 203: 117872.

Bridgwater A V. Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 2003; 91(2): 87–102.

Chamie J. Population growth diversity continuing in the twenty-first century. In: Chamie J (Ed. ), editors. Population Levels, Trends, and Differentials: More Important Population Matters. Switzerland: Springer Cham. 2022; pp.179–182.

Van D M, Morley T, Rau M L, Saghai Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2021; 2(7): 494–501.

Ishangulyyev R, Kim S, Lee S H. Understanding food loss and waste Why are we losing and wasting food? Foods, 2019; 8(8): 297. doi: 10.3390/foods8080297

Guo J C, Dan Z, Yang T, Meng D ., Zhou W W, Liu L W, et al. Research status and progress on resource utilization of mineralized waste of waste landfill site. Recyclable Resources and Circular Economy, 2023; 16(2): 33–37. (in Chinese)

Zhang Y Y. The analysis of the current situation and pollution control strategies of municipal solid waste incineration treatment. Heilongjiang Environmental Journal, 2023; 36(8): 102–104. (in Chinese)

Li Y C, Pan Y, Wang Y, Xin J F, Yang T. Current situation and prospects of kitchen waste treatment in China. China Resources Comprehensive Utilization, 2023; 41(6): 119–121. (in Chinese)

Kataya G, Cornu D, Bechelany M, Hijazi A, Issa M. Biomass waste conversion technologies and its application for sustainable environmental development: A review. Agronomy, 2023; 13(11): 2833.

Tursi A. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal, 2019; 6(2): 962–979.

Mohapatra S S, Rath M K, Singh R K, Murugan S. Performance and emission analysis of co-pyrolytic oil obtained from sugarcane bagasse and polystyrene in a CI engine. Fuel, 2021; 298: 120813.

Copa Rey J R, Tamayo Pacheco J J, António da Cruz Tarelho L, Silva V, Cardoso J S, Silveira J L, et al. Evaluation of cogeneration alternative systems integrating biomass gasification applied to a Brazilian sugar industry. Renewable Energy, 2021; 178: 318–333.

Muigai H H, Bordoloi U, Hussain R, Ravi K, Moholkar V S, Kalita P. A comparative study on synthesis and characterization of biochars derived from lignocellulosic biomass for their candidacy in agronomy and energy applications. International Journal of Energy Research, 2021; 45(3): 4765–4781.

Wan Mahari W A, Chong C T, Cheng C K, Lee C L, Hendrata K, Yek P N Y, et al. Production of value-added liquid fuel via microwave copyrolysis of used frying oil and plastic waste. Energy, 2018; 162: 309–317.

Lam S S, Wan Mahari W A, Ok Y S, Peng W, Chong C T, Ma N L, et al. Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis. Renewable and Sustainable Energy Reviews, 2019; 115: 109359.

Baharin N S K, Koesoemadinata V C, Nakamura S, Yahya W J, Yuzir M A M, Akhir F N M, et al. Conversion and characterization of Bio-Coke from abundant biomass waste in Malaysia. Renewable Energy, 2020; 162: 1017–1025.

Miranda N T, Motta I L, Maciel Filho R, Maciel M R W. Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. Renewable and Sustainable Energy Reviews, 2021; 149: 111394.

Liu Z Z, Singer S, Tong Y, Kimbell L, Anderson E, Hughes M, et al. Characteristics and applications of biochars derived from wastewater solids. Renewable and Sustainable Energy Reviews, 2018; 90: 650–664.

Dhara F T, Fayshal M A. Waste Sludge: Entirely Waste or a Sustainable Source of Biocrude? A Review. App.Biochem Biotechnol, 2024, 196; 5821–5842.

Qiu F, Hu Z Q, An Y. Status Quo and Competitiveness of Agricultural Products Export in China. Chinese Agricultural Science Bulletin. 2019; 35(9): 149–154. (in Chinese)

Ingrao C, Matarazzo A, Gorjian S, Adamczyk J, Failla S, Primerano P, et al. Wheat-straw derived bioethanol production: A review of Life Cycle Assessments. Science of the Total Environment, 2021; 781: 146751.

Havrysh V, Kalinichenko A, Brzozowska A, Stebila J. Agricultural Residue Management for Sustainable Power Generation: The Poland Case Study. Applied Sciences, 2021; 11(13): 5907.

Brand M A, Jacinto R C. Apple pruning residues: Potential for burning in boiler systems and pellet production. Renewable Energy, 2020; 152: 458–466.

Sánchez Borrego F J, Alvarez Mateos P, García-Martín J F. Biodiesel and other value-added products from bio-oil obtained from agrifood waste. Processes, 2021; 9(5): 797.

Dong C D, Chen C W, Hung C M. Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments. Bioresource Technology, 2017; 245: 188–195.

Fu J, Du J, Lin G, Jiang D. Analysis of yield potential and regional distribution for bioethanol in China. Energies, 2021; 14(15): 4554.

Han X, He H, Yue G J, Lin H L, Liu J S, Yu B. Development opportunities and technical challenges of industrialization for hydrogen production from bio-ethanol reforming. Bulletin of Chinese Academy of Sciences, 2023; 38(1): 134–144. (in Chinese)

National Energy Administration issues “13th Five-Year Plan for Biomass Energy Development”. China Electricity, 2017(2): 1. (in Chinese)

Kwon G, Bhatnagar A, Wang H, Kwon E E, Song H. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. Journal of Hazardous Materials, 2020; 400: 123242.

Dai L L, Wang Y P, Liu Y H, He C, Ruan R, Yu Z T, et al. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass. Science of The Total Environment, 2020; 749: 142386.

Kong S H, Loh S K, Bachmann R T, Rahim S A, Salimon J. Biochar from oil palm biomass: A review of its potential and challenges. Renewable and Sustainable Energy Reviews, 2014; 39: 729–739.

Ge S, Foong S Y, Ma N L, Liew R K, Wan Mahari W A, Xia C, et al. Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into ecofriendly bioenergy products. Renewable and Sustainable Energy Reviews, 2020; 127: 109871.

Sophanodorn K, Unpaprom Y, Whangchai K, Homdoung N, Dussadee N, Ramaraj R. Environmental management and valorization of cultivated tobacco stalks by combined pretreatment for potential bioethanol production. Biomass Conversion and Biorefinery, 2022; 12(5): 1627– 1637.

Taechawatchananont N, Manmai N, Pakeechai K, Unpaprom Y, Ramaraj R, Liao S Y. Potentials of bioethanol production from sunflower stalks: value-adding agricultural waste for commercial use. Biomass Conversion and Biorefinery, 2022; 14(17): 11799–11811.

He Q P, Luo Y, Feng Y Y, Xie K, Zhang K Q, Shen S Z, et al. Biochar produced from tobacco stalks, eggshells, and Mg for phosphate adsorption from a wide range of pH aqueous solutions. Materials Research Express, 2020; 7(11): 115603.

Zuo H F, Qin X X, Liu Z G, Fu Y L. Preparation and characterization of modified corn stalk biochar. Bioresources, 2021; 16(4): 7427–7442.

Adhikari S, Illukpitiya P. Small-scale biodiesel production for on-farm energy security: a sustainable income diversification opportunity for oilseed producers. Biofuels-Uk, 2021; 12(6): 605–614.

Roman Figueroa C, Cea M, Paneque M. Industrial oilseed crops in Chile: Current situation and future potential. Biofuels Bioproducts & BiorefiningBiofpr, 2023; 17(1): 273–290.

Taheripour F, Sajedinia E, Karami O. Oilseed cover crops for sustainable aviation fuels production and reduction in greenhouse gas emissions through land use savings. Frontiers in Energy Research, 2022; 9: 790421.

Syafrudin, Nugraha W D, Munkar G, Matin H H A, Budiyono. The influence of C/N ratio to biogas production from water hyacinth as an aquatic weed plant during liquid anaerobic digestion (L-AD). Advanced Science Letters, 2019; 24(12): 9832–9834.

Ajithram A, Jappes J T W, Siva I, Brintha N C. Utilizing the aquatic waste and investigation on water hyacinth (Eichhornia crassipes) natural plant in to the fibre composite: Waste recycling. Materials TodayProceedings, 2022; 58: 953–958.

Lan K, Ou L, Park S, Kelley S S, Nepal P, Kwon H, et al. Dynamic lifecycle carbon analysis for fast pyrolysis biofuel produced from pine residues: implications of carbon temporal effects. Biotechnology for Biofuels, 2021; 14(1): 191.

Zhu H, Saddler J, Bi X T. An economic and environmental assessment of biofuel produced via microwave-assisted catalytic pyrolysis of forest residues. Energy Conversion and Management, 2022; 263: 115723.

Azasi V D, Offei F, Kemausuor F, Akpalu L. Bioenergy from crop residues: A regional analysis for heat and electricity applications in Ghana. Biomass & Bioenergy, 2020; 140: 105640.

Zinla D, Gbaha P, Koffi P M E, Koua B K. Characterization of rice, coffee and cocoa crops residues as fuel of thermal power plant in Cote d’ Ivoire. Fuel, 2021; 283: 119250.

Martín M, Taifouris M, Galán G. Lignocellulosic biorefineries: A multiscale approach for resource exploitation. Bioresource Technology, 2023; 385: 129397.

Poornima S, Manikandan S, Prakash R, Deena S R, Subbaiya R, Karmegam N, et al. Biofuel and biochemical production through biomass transformation using advanced thermochemical and biochemical processes-A review. Fuel, 2024; 372. doi: 10.1016/j.fuel.2024.132204

Velvizhi G, Jacqueline P J, Shetti N P, Latha K, Mohanakrishna G, Aminabhavi T M. Emerging trends and advances in valorization of lignocellulosic biomass to biofuels. Journal of Environmental Management, 2023; 345: 118527.

Abdurrahman G. Biomass conversion technologies for bioenergy generation: An introduction. biotechnological applications of biomass. In: Hakeem K R, Jawaid M, Rashid U, editors. London: InTechOpen. 2020. doi: 10.5772/intechopen.93669

Williams C L, Dahiya A, Porter P. Chapter 1-Introduction to bioenergy and waste to energy. Bioenergy Research: Biomass Waste to Energy. In: Srivastava M, Srivastava N, Singh R, editors. Singapore: Springer Singapore. 2020; pp.5–44.

Pan T, Wang Z L. Microbial biocatalysis. Catalysts, 2023; 13(3): 629.[ 57] Chen H, Wang L. Technologies for biochemical conversion of biomass. Beijing: Metallurgical Industry Press, 2016; 277p.

Chen H, Wang L. Technologies for biochemical conversion of biomass. Beijing: Metallurgical Industry Press, 2016; 277p.

Fu S F, Xu X H, Dai M, Yuan X Z, Guo R B. Hydrogen and methane production from vinasse using two-stage anaerobic digestion. Process Safety and Environmental Protection, 2017; 107: 81–86.

Kumar D, Juneja A, Singh V. Fermentation technology to improve productivity in dry grind corn process for bioethanol production. Fuel Processing Technology, 2018; 173: 66–74.

Shi S S, Yue C, Wang L H, Sun X H, Wang Q H. A bibliometric analysis of anaerobic digestion for butanol production research trends. Seventh International Conference on Waste Management and Technology, 2012; 16: 152–158.

Chairul, Muria S R, Rohaya. The Effect of sugar concentration and time for nypa sap fermentation into acetic acid using Acetobacter pasteurianus. Universitas Riau International Conference on Science and Environment 2020, 2020; 1655: 012105.

Zhang Y H, Li X L, Wang Z Q, Wang Y S, Ma Y Y, Su Z G. Metabolic flux analysis of simultaneous production of Vitamin B12 and propionic acid in a coupled fermentation process by propionibacterium freudenreichii. Applied Biochemistry and Biotechnology, 2021; 193(10): 3045–3061.

Alexandri M, Vlysidis A, Papapostolou H, Tverezovskaya O, Tverezovskiy V, Kookos I K, et al. Downstream separation and purification of succinic acid from fermentation broths using spent sulphite liquor as feedstock. Separation and Purification Technology, 2019; 209: 666–675.

Kumar S, Ankaram S. Chapter 12-Waste-to-energy model/tool presentation. In: Larroche C, Ángeles Sanromán M, Du G C, Pandey A, editors. Current Developments in Biotechnology and Bioengineering. Amsterdam: Elsevier. 2019; pp.239–258.

Sangeetha T, Rajneesh C P, Yan W M. 15-Integration of microbial electrolysis cells with anaerobic digestion to treat beer industry wastewater. In: Sangeetha T, Rajneesh C P, Yan W M, editors. Integrated Microbial Fuel Cells for Wastewater Treatment. Amsterdam: Elsevier. 2020; pp.313–346.

Shahzad H M A, Almomani F, Shahzad A, Mahmoud K A, Rasool K. Challenges and opportunities in biogas conversion to microbial protein: A pathway for sustainable resource recovery from organic waste. Process Safety and Environmental Protection, 2024; 185: 644–659.

Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable & Sustainable Energy Reviews, 2012; 16(3): 1462–1476.

Xu F Q, Li Y B. Solid-state co–digestion of expired dog food and corn stover for methane production. Bioresource Technology, 2012; 118: 219–226.

Zhang H B, Zhang Y, Zhang Y Y, Shen F, Cheng W, Li Y P, et al. Research progress on methane production process by anaerobic digestion of waste tobacco stalks. Journal of Kunming University, 2023; 45(6): 55–63. (in Chinese)

Caiardi F, Belaud J P, Vialle C, Monlau F, Tayibi S, Barakat A, et al. Waste-to-energy innovative system: Assessment of integrating anaerobic digestion and pyrolysis technologies. Sustainable Production and Consumption, 2022; 31: 657–669.

Wang H, Yang Y F, Wu B R, Chai X L, Dai X H. Highly efficient solidliquid separation of anaerobically digested liquor of food waste: Conditioning approach screening and mechanistic analysis. Science of The Total Environment, 2022; 811: 152416.

Patra D, Patra B R, Pattnaik F, Hans N, Kushwaha A. Chapter 5-Recent evolution in green technologies for effective valorization of food and agricultural wastes. In: Hussain M C, Singh S, Goswami L, editors. Emerging Trends to Approaching Zero Waste. Amsterdam: Elsevier. 2022; pp.103–132.

Galbe M, Wallberg O. Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnology for Biofuels, 2019; 12: 294.

Dias M O S, Cavalett O, Maciel Filho R, Bonomi A. Integrated first and second generation ethanol production from sugarcane. International Conference on BioMass Florence, 2014; 37: 445.

Maga D, Thonemann N, Hiebel M, Sebastiao D, Lopes T F, Fonseca C, et al. Comparative life cycle assessment of first- and second-generation ethanol from sugarcane in Brazil. International Journal of Life Cycle Assessment, 2019; 24(2): 266–280.

Rodionova M V, Bozieva A M, Zharmukhamedov S K, Leong Y K, Lan J C W, Veziroglu A, et al. A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. International Journal of Hydrogen Energy, 2022; 47(3): 1481–1498.

Jayakumar M, Gindaba G T, Gebeyehu K B, Periyasamy S, Jabesa A, Baskar G, et al. Bioethanol production from agricultural residues as lignocellulosic biomass feedstock’s waste valorization approach: A comprehensive review. Science of The Total Environment, 2023; 879: 163158.

Galbe M, Wallberg O, Zacchi G. Techno-economic aspects of ethanol production from lignocellulosic agricultural crops and residues. Lund University Publications. 2011; 6: 615–628.

Tse T J, Wiens D J, Reaney M J T. Production of bioethanol—A Review of factors affecting ethanol yield. Fermentation-Basel, 2021; 7(4): 268.

Liang H D. Open access publishing of scientific scholarly journals in China. Master dissertation. Inner Mongolia: Inner Mongolia University of Technology, 2023; 56 p. doi: 10.27225/d.cnki.gnmgu.2023.000266

Li G X, Yu T L, Niu C R, Shen Y L, Zhu X R, Lang W P, et al. Research progress on resource utilization of landscape waste and composting technology. Contemporary Horticulture, 2023; 46(24): 120–122.

Cai L L. Open access publishing of scientific scholarly journals in China. PhD dissertation. Beijiing: Beijing Forestry University, 2022; 98 p. doi: 10.26949/d.cnki.gblyu.2021.000343

Jing L Y. Open access publishing of scientific scholarly journals in China. Master dissertation. Xian: Southwest Jiaotong University, 2023; 56 p. doi: 10.27414/d.cnki.gxnju.2022.002984

Martínez-Blanco J, Lazcano C, Christensen T H, Muñoz P. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agronomy for Sustainable Development, 2013; 33(4): 721–732.

Corato U D. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Science of The Total Environment, 2020; 738: 139840.

Zhao S X, Schmidt S, Gao H J, Li T Y, Chen X P, Hou Y, et al. A precision compost strategy aligning composts and application methods with target crops and growth environments can increase global food production. Nature Food, 2022; 3: 741–752.

Ayilara M S, Olanrewaju O S, Babalola O O, Odeyemi O. Waste management through composting: challenges and potentials. Sustainability, 2020; 12(11): 4456.

Mahinpey N, Gomez A. Review of gasification fundamentals and new findings: Reactors, feedstock, and kinetic studies. Chemical Engineering Science, 2016; 292: 119994.

Zhang W J, Chen Q Y, Chen J F, Xu D H, Zhan H, Peng H Y, et al. Machine learning for hydrothermal treatment of biomass: A review. Bioresource Technology, 2023; 370: 128547.

Sadhwani N, Liu Z, Eden M R, Adhikari S. Simulation, analysis, and assessment of CO2 enhanced biomass gasification. Computer-aided chemical engineering, 2013; 32: 421–426.

Yang W, Pudasainee D, Gupta R, Li W, Wang B, Sun L S. An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: Sampling and measurement, formation, distribution, inorganic composition and influencing factors. Fuel Processing Technology, 2021; 213: 106657.

Lam M K, Loy A C M, Yusup S, Lee K T. Chapter 9 - Biohydrogen Production From Algae. In: Pandey A, Lee D J, Chisti Y, Carlos R, editors. Biofuels From Algae. Amsterdam: Elsevier. 2019; pp.219–245.

Kwong K Y, Marek E J. Combustion of biomass in fluidized beds: A review of key phenomena and future perspectives. Energy & Fuels, 2021; 35(20): 16303–16334.

Sagastume Gutierrez A, Cabello Eras J J, Hens L, Vandecasteele C. The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. Journal of Cleaner Production, 2020; 269: 122317.

Zhao X G, Feng T T, Ma Y, Yang Y S, Pan X F. Analysis on investment strategies in China: the case of biomass direct combustion power generation sector. Renewable and Sustainable Energy Reviews, 2015; 42: 760–772.

Babu S P. Observations on the current status of biomass gasification. Bioenergy, 2005(4): 40–46.

Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006; 106(9): 4044–4498.

Guan G, Kaewpanha M, Hao X, Abudula A. Catalytic steam reforming of biomass tar: Prospects and challenges. Renewable & Sustainable Energy Reviews, 2016; 58: 450–461.

Gao Y, Wang M, Raheem A, Wang F, Wei J, Xu D, et al. Syngas production from biomass gasification: Influences of feedstock properties, reactor type, and reaction parameters. ACS Omega, 2023; 8(35): 31620–31631.

Yao X W, Zhou H D, Qi P Y, Xu K L. Insights into synergistic effects of oxygen content and reaction temperature on gas product emissions and solid product deposition behaviors during biomass gasification process. Biomass Conversion and Biorefinery, 2025; 15: 4109–4124.

Liu Y. Open access publishing of scientific scholarly journals in China. PhD dissertation. Beijing: Beijing University of Chemical Technology, 2022; 102 p. doi: 10.26939/d.cnki.gbhgu.2023.000149

Walling E, Babin A, Vaneeckhaute C. Nutrient and carbon recovery from organic wastes. In: Rodrigo J, Oyanedel B, Schmidt J E, editors. Biorefinery: Integrated Sustainable Processes for Biomass Conversion to Biomaterials, Biofuels, and Fertilizers. Cham: Springer Chan. 2019; pp.351–373.

AlNouss A, Alherbawi M, McKay G, Al Ansari T. Integrated technoeconomic and sustainability assessment of value-added products generated from biomass gasification: An energy-water-food nexus approach. ACS Sustainable Chemistry and Engineering, 2023; 11(10): 3987–3998.

Tasaka K, Furusawa T, Ujimine, Tsutsumi A. surface analyses of cobalt catalysts for the steam reforming of tar derived from biomass gasification. In: Tasaka K, Furusawa T, editors. Studies in Surface Science and Catalysis. Amsterdam: Elsevier. 2006; pp.517–250.

Palmer R. Identification and comparison. In: Jamieson A, Moenssens A, editors. Encyclopedia of Forensic Sciences. London: Wiley-Blackwell. 2013; pp.129–137.

Campuzano F, Brown R C, Daniel Martinez J. Auger reactors for pyrolysis of biomass and wastes. Renewable & Sustainable Energy Reviews, 2019; 102: 372–409.

Lee Y, Eum P R B, Ryu C, Park Y K, Jung J H, Hyun S. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresource Technology, 2013; 130: 345–350.

Liu R, Sarker M, Rahman M M, Li C, Chai M, Ni S, et al. Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production—A review. Progress in Energy and Combustion Science, 2020; 80: 100852.

Maek O. Biochar in thermal and thermochemical biorefineries-production of biochar as a coproduct. In: Faaij A, Ree R, Uil H, editors. Handbook of Biofuels Production: Processes and Technologies: Second Edition. Amsterdam: Elsevier. 2016; pp.655–671.

Yoder J, Galinato S, Granatstein D, Garcia-Pérez M. Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass and Bioenergy, 2011; 35(5): 1851–1862.

Hashim H, Narayanasamy M, Yunus N A, Shiun L J, Muis Z A, Ho W S. A cleaner and greener fuel: Biofuel blend formulation and emission assessment. Journal of Cleaner Production, 2017; 146: 208–217.

Dong T, Gao D, Miao C, Yu X, Degan C, Garcia-Pérez M, et al. Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char. Energy Conversion and Management, 2015; 105: 1389–1396.

Li W J, Huang H M, Wang Q, Zhang Z M. Protection of pyrolysis gases combustion against charring materials’ surface ablation. International Journal of Heat and Mass Transfer, 2016; 102: 10–17.

Bertero M, Sedran U. Chapter 13 - coprocessing of bio-oil in fluid catalytic cracking. In: Bridgwater A V, editors. Recent Advances in Thermo-Chemical Conversion of Biomass. Amsterdam: Elsevier. 2015; pp.355–381.

Rajapaksha A U, Vithanage M, Zhang M, Ahmad M, Mohan D, Chang S X, et al. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology, 2014; 166: 303–308.

Arellano O, Flores M, Guerra J, Hidalgo A, Rojas D, Strubinger A. Hydrothermal carbonization of corncob and characterization of the obtained hydrochar. 2nd International Conference on Biomass, 2016; 50: 235–240.

Xiao L P, Shi Z J, Xu F, Sun R C. Hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology, 2012; 118: 619–623.

Nasrollahzadeh M, Nezafat Z, Shafiei N. Chapter 5 - Lignin chemistry and valorization. In: Nasrollahzadeh M, editors. Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications. Amsterdam: Elsevier. 2021; pp.145–183.

Oliveira I, Blohse D, Ramke H G. Hydrothermal carbonization of agricultural residues. Bioresource Technology, 2013; 142: 138–146.

Yao Z L, Ma X Q. Hydrothermal carbonization of Chinese fan palm. Bioresource Technology, 2019; 282(7): 28–36.

Zhai Y B, Liu X M, Zhu Y, Peng C, Wang T, Zhu L, et al. Hydrothermal carbonization of sewage sludge: The effect of feed–water pH on fate and risk of heavy metals in hydrochars. Bioresource Technology, 2016; 218: 183–188.

Guo S, Kumar Awasthi M, Wang Y, Xu P. Current understanding in conversion and application of tea waste biomass: A review. Bioresource Technology, 2021; 338: 125530.

Ischia G, Fiori L. Hydrothermal carbonization of organic waste and biomass: A review on process, reactor, and plant modeling. Waste and Biomass Valorization, 2020; 12: 2797–2824.

Singh R, Prakash A, Balagurumurthy B, Bhaskar T. Chapter 10 Hydrothermal liquefaction of biomass. In: Bridgwater A V, eiditors. Recent Advances in Thermo-Chemical Conversion of Biomass. Amsterdam: Elsevier. 2015; pp.269–291.

Infantes A, Kugel M, Raffelt K, Neumann A. Side-by-side comparison of clean and biomass-derived, impurity-containing syngas as substrate for acetogenic fermentation with Clostridium ljungdahlii. FermentationBasel, 2020; 6(3): 84.

Griffin D W, Schultz M A. Fuel and chemical products from biomass syngas: A comparison of gas fermentation to thermochemical conversion routes. Environmental Progress & Sustainable Energy, 2012; 31(2): 219–224.

Ramalingam S, Ezhumalai M, Govindasamy M. Syngas: Derived from biodiesel and its influence on CI engine. Energy, 2019; 189: 116189.

Monir M U, Aziz A A, Khatun F, Yousuf A. Bioethanol production through syngas fermentation in a tar free bioreactor using Clostridium butyricum. Renewable Energy, 2020; 157: 1116–1123.

Andreides D, Quispe J I B, Bartackova J, Pokorna D, Zabranska J. A novel two-stage process for biological conversion of syngas to biomethane. Bioresource Technology, 2021; 327: 124811.

Nadaleti W C. Utilization of residues from rice parboiling industries in southern Brazil for biogas and hydrogen-syngas generation: Heat, electricity and energy planning. Renewable Energy, 2019; 131: 55–72.

Nurdiawati A, Zaini I N, Irhamna A R, Sasongko D, Aziz M. Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae. Renewable & Sustainable Energy Reviews, 2019; 112: 369–381.

Pan X Q, Gu Z P, Chen W M, Li Q B. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review. Science of the Total Environment, 2021; 754: 142104.

Liu Y B, Zhu Z Y, Shi J W, Zhao S Y, Liu F, Jin H. Facile synthesis and economic analysis of Cu/C catalyst for efficient biodiesel production. International Journal of Energy Research, 2022; 46(14): 19814–19825.

Tobío-Pérez I, Domínguez Y D, Machín L R, Pohl S, Lapuerta M, PilotoRodríguez R. Biomass-based heterogeneous catalysts for biodiesel production: A comprehensive review. International Journal of Energy Research, 2022; 46(4): 3782–3809.

Kang K, Nanda S, Hu Y. Current trends in biochar application for catalytic conversion of biomass to biofuels. Catalysis Today, 2022; 404: 4043–4018.

Adekiya A O, Adebiyi O V, Ibaba A L, Aremu C, Ajibade R O. Effects of wood biochar and potassium fertilizer on soil properties, growth and yield of sweet potato (Ipomea batata). Heliyon, 2022; 8(11): e11728.

Li Z J, Zhou M Y, Liu N X, Zhang F Y, An K Y, Xiong X W, et al. Engineered biochar derived from lemon peel waste for highly efficient removal of organic pollutants from water. Arabian Journal of Chemistry, 2023; 16(10): 105158.

Dehkhoda A M, Ellis N. Biochar-based catalyst for simultaneous reactions of esterification and transesterification. Catalysis Today, 2013; 207: 86–92.

Qin C C, Wang H, Yuan X Z, Xiong T, Zhang J J, Zhang J. Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices. Chemical Engineering Journal, 2020; 382: 122977.

Toda M, Takagaki A, Okamura M, Kondo J N, Hayashi S, Domen K, et al. Green chemistry: Biodiesel made with sugar catalyst. Nature, 2005; 438: 178.

Hai Nguyen T, Tomul F, Nguyen Thi Hoang H, Dong Thanh N, Lima E C, Giang Truong L, et al. Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. Journal of Hazardous Materials, 2020; 394: 122255.

Hai Nguyen T, Lee C K, Tien Vinh N, Chao H P. Saccharide-derived microporous spherical biochar prepared from hydrothermal carbonization and different pyrolysis temperatures: synthesis, characterization, and application in water treatment. Environmental Technology, 2018; 39(21): 2747–2760.

Schmidt H P, Kammann C, Niggli C, Evangelou M W H, Mackie K A, Abiven S. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agriculture, Ecosystems & Environment, 2014; 191: 117–123.

Placido J, Bustamante-López S, Meissner K E, Kelly D E, Kelly S L. Comparative study of the characteristics and fluorescent properties of three different biochar derived-carbonaceous nanomaterials for bioimaging and heavy metal ions sensing. Fuel Processing Technology, 2019; 196: 106163.

Liu Y, Yao L, He L Z, Liu N, Piao Y X. Electrochemical enzyme biosensor bearing biochar nanoparticle as signal enhancer for bisphenol a detection in water. Sensors, 2019; 19(7): 1619.

Anto S, Karpagam R, Renukadevi P, Jawaharraj K, Varalakshmi P. Biomass enhancement and bioconversion of brown marine microalgal lipid using heterogeneous catalysts mediated transesterification from biowaste derived biochar and bionanoparticle. Fuel, 2019; 255: 115789.

Hu X, Gunawan R, Mourant D, Hasan M D M, Wu L, Song Y, et al. Upgrading of bio-oil via acid-catalyzed reactions in alcohols - A mini review. Fuel Processing Technology, 2017; 155: 2–19.

Hu X, Zhang Z, Gholizadeh M, Zhang S, Lam C H, Xiong Z, et al. Coke formation during thermal treatment of bio-oil. Energy & Fuels, 2020; 34(7): 7863–7914.

Wang B, Xiao R, Zhang H Y. An overview of bio-oil upgrading with high hydrogen-containing feedstocks to produce transportation fuels: Chemistry, catalysts, and engineering. Current Organic Chemistry, 2019; 23(7): 746–767.

No S Y. Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation-A review. Renewable & Sustainable Energy Reviews, 2014; 40: 1108–1125.

Liu Y, Via B K, Pan Y, Cheng Q, Guo H W, Auad M L, et al. Preparation and characterization of epoxy resin cross-linked with high wood pyrolysis Bio-Oil substitution by acetone pretreatment. Polymers, 2017; 9(3): 106.

Yu Y X, Wang Y F, Xu P P, Chang J M. Preparation and Characterization of Phenolic Foam Modified with Bio–Oil. Materials, 2018; 11(11): 2228.

Qiu B B, Tao D, Wang J H, Liu Y, Li S T, Chu H Q. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review. Energy Conversion and Management, 2022; 261: 115647.

Ahmed S F, Rafa S J, Mehjabin A, Tasannum N, Ahmed S, Mofijur M, et al. Bio-oil from microalgae: Materials, production, technique, and future. Energy Reports, 2023; 10: 3297–3314.

Velidandi A, Kumar Gandam P, Latha Chinta M, Konakanchi S, Reddy Bhavanam A, Raju Baadhe R et al. State-of-the-art and future directions of machine learning for biomass characterization and for sustainable biorefinery. Journal of Energy Chemistry, 2023; 81: 42–63.

Vinitha N, Vasudevan J, Gopinath K P. Bioethanol production optimization through machine learning algorithm approach: biomass characteristics, saccharification, and fermentation conditions for enzymatic hydrolysis. Biomass Conversion and Biorefinery, 2023; 13: 7287–7299.

Jeon P R, Moon J H, Ogunsola N O, Lee S H, Ling J L J, You S M, et al. Recent advances and future prospects of thermochemical biofuel conversion processes with machine learning. Chemical Engineering Journal, 2023; 471: 144503.

Phromphithak S, Onsree T, Tippayawong N. Machine learning prediction of cellulose-rich materials from biomass pretreatment with ionic liquid solvents. Bioresource Technology, 2021; 323: 124642.

Kovačić Đ, Radočaj D, Samac D, Jurišić M. Influence of thermal pretreatment on lignin destabilization in harvest residues: An ensemble

machine learning approach. Agri Engineering, 2024; 6(1): 171–184. Bhutto A W, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi A A, et al. Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 2017; 122: 724–745.

Wang Z, Wu S, Fan C, Zheng X Y, Zhang W, Wu D Y, et al. Optimisation of enzymatic saccharification of wheat straw pre-treated with sodium hydroxide. Scientific Reports, 2021; 11: 23234.

Li F, Li Y, Novoselov K S, Liang F, Meng J S, Ho S H, et al. Bioresource upgrade for sustainable energy, environment, and biomedicine. NanoMicro Letters, 2023; 35: 15.

Ogunsola N O, Oh S S, Jeon P R, Ling J L J, Park H J, Park H S, et al. Progresses and challenges of machine learning approaches in thermochemical processes for bioenergy: A review. Korean Journal of Chemical Engineering, 2024; 41: 1923–1953.

Helleckes L M, Hemmerich J, Wiechert W, Lieres E V, Grünberger A. Machine learning in bioprocess development: from promise to practice. Trends in Biotechnology, 2023; 41(6): 817–835.

Khaleghi M K, Savizi I S P, Lewis N E, Shojaosadati S A. Synergisms of machine learning and constraint-based modeling of metabolism for analysis and optimization of fermentation parameters. Biotechnology Journal, 2021; 16(11): 2100212.

Khanal S K, Tarafdar A, You S M. Artificial intelligence and machine learning for smart bioprocesses. Bioresource Technology, 2023; 375: 128826.

Williams T, Kalinka K, Sanches R, Blanchard Emmerson G, Watts S, Davies L, et al. Machine learning and metabolic modelling assisted implementation of a novel process analytical technology in cell and gene therapy manufacturing. Scientific Reports, 2023; 13(1): 834.

Tang Q H, Chen Y Q, Yang H P, Liu M, Xiao H Y, et al. Machine learning prediction of pyrolytic gas yield and compositions with feature reduction methods: Effects of pyrolysis conditions and biomass characteristics. Bioresour Technol, 2021; 339: 125581.

Wei H, Luo K, Xing J K, Fan J R. Predicting co-pyrolysis of coal and biomass using machine learning approaches. Fuel, 2022; 310: 122248.

Cao H L, Xin Y, Yuan Q X. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach. Bioresour Technol, 2016; 202: 158–164.

Chen X, Zhang H Y, Song Y, Xiao R. Prediction of product distribution and bio-oil heating value of biomass fast pyrolysis. Chem Eng Process Process Intensif, 2018; 130: 36–42.

Çepelioğullar Ö, Mutlu İ, Yaman S, Haykiri-Acma H. A study to predict pyrolytic behaviors of refuse-derived fuel (RDF): Artificial neural network application. J Anal App Pyrolysis, 2016; 122: 84–94.

Aydinli B, Caglar A, Pekol S, Karaci A. The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network. Energy Explor Exploit, 2017; 35: 698–712.

Karaci A, Caglar A, Aydinli B, Pekol S. The pyrolysis process verification of hydrogen rich gas (H-rG) production by artificial neural network (ANN). Int J Hydrogen Energy, 2016; 41: 4570–4578.

Naqvi S R, Hameed Z, Tariq R, Taqvi S A, Ali I, Niazi M B K, et al. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Manag, 2019; 85: 131–140.

Sunphorka S, Chalermsinsuwan B, Piumsomboon P. Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents. Fuel, 2017; 193: 142–158.

Zhang J, Liu J, Evrendilek F, Zhang X, Buyukada M. TG-FTIR and PyGC/MS analyses of pyrolysis behaviors and products of cattle manure in CO2 and N2 atmospheres: Kinetic, thermodynamic, and machine-learning models. Energy Convers Manag, 2019; 195: 346–359. [179] Hough B R, Beck D A C, Schwartz D T, Pfaendtner J. Application of machine learning to pyrolysis reaction networks: Reducing model solution time to enable process optimization. Comput Chem Eng, 2017; 104: 56–63.

Li J, Pan L, Suvarna M, Tong Y W, Wang X. Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning. App. Energy, 2020; 269: 115166.

Li X T, Zhou J, Wang H H. Gaussian mixture models with rare events. Journal of Machine Learning Research, 2024; 25: 1–40.

Kasa S R, Hu Y J, Kasa S K, Rajan V. Mixture-Models: A one-stop Python library for model-based clustering using various mixture models. arXiv: 2402.10229, 2024; In press.

August, 2025 Lan W J, et al. Research progress in biomass conversion technology and its product application Vol. 18 No. 415

Sarkar S, Melnykov V, Zheng R. Gaussian mixture modeling and modelbased clustering under measurement inconsistency. Advances in Data Analysis and Classification, 2020; 14: 379–413.

You J, Li Z, Du J. A new iterative initialization of EM algorithm for Gaussian mixture models. PLoS ONE, 2023; 18(4): e0284114.

García Nieto P J, García Gonzalo E, Beatriz M, Sánchez P, José P, Sánchez P. Forecast of the higher heating value based on proximate analysis by using support vector machines and multilayer perceptron in bioenergy resources. Fuel, 2022; 317: 122824.

Shi L L, Gong J H, Zhai C J. Application of a hybrid PSO-GA optimization algorithm in determining pyrolysis kinetics of biomass. Fuel, 2022; 323: 124344.

Liu J X, Lyu H F, Cheng C, Xu Z M, Zhang W J. Enhancing pyrolysis process monitoring and prediction for biomass: A machine learning approach. Fuel, 2024; 362: 130873.

Khan M, Naqvi S R, Ullah Z, Taqvi S A A, Khan M N A, Farooq W, et al. Applications of machine learning in thermochemical conversion of biomass - A review. Fuel, 2023; 332(1): 126055.

Abdollahi S A, Ranjbar S F, Razeghi J D. Applying feature selection and machine learning techniques to estimate the biomass higher heating value. Scientific Reports, 2023; 13: 16093.

Mujahid M, Kına E, Rustam F, Villar M G, Alvarado E S, Torre Diez I D L, et al. Data oversampling and imbalanced datasets: An investigation of performance for machine learning and feature engineering. Journal of Big Data, 2024; 11: 87.

Ren S J, Wu S L, Weng Q H. Physics-informed machine learning methods for biomass gasification modeling by considering monotonic relationships. Bioresource Technology, 2023; 369: 128472.

Wang Z, Peng X, Xia A, Shah A A, Huang Y, Zhu X Y, et al. The role of machine learning to boost the bioenergy and biofuels conversion. Bioresource Technology, 2022; 343: 126099.

Yi Z, Ji L, Li M Y, Chen H S, Xiao Y C. The yield improvement of threestate products from biomass pyrolysis based on machine learning. Chemistry and Industry of Forest Products, 2023; 43(6): 113–122. (in Chinese)

Yao J N. Biomass energy: Diversified development is the key to going further. China Energy News, 2023-04-24, (p. 009).

Sarker, I H. Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2021; 2: 160.

Downloads

Published

2025-08-21

How to Cite

Lan, W., Yang, Y., Zhao, X., Cui, H., Jin, X., Yin, D., … Zhang, J. (2025). Research progress in biomass conversion technology and its product application. International Journal of Agricultural and Biological Engineering, 18(4), 1–16. https://doi.org/10.25165/ijabe.v18i4.8999

Issue

Section

Overview Articles