Detection of the yellow-leaf disease of rubber trees using low-altitude digital imagery from UAV
Abstract
Keywords: rubber tree, yellow-leaf disease, low-altitude digital imagery, UAV
DOI: 10.25165/j.ijabe.20241706.9213
Citation: Qi J T, Li M, Zhang H M, Zeng T W. Detection of the yellow-leaf disease of rubber trees using low-altitude digital imagery from UAV. Int J Agric & Biol Eng, 2024; 17(6): 245–255.
Keywords
Full Text:
PDFReferences
Ge J, Wang X L, Koji K. Comparing tractive performance of steel and rubber single grouser shoe under different soil moisture contents. Int J Agric & Biol Eng, 2016; 9(2): 11–20.
Yoo H, Oh J, Chung W-J, Han H-W, Kim J-T, Park Y-J, et al. Measurement of stiffness and damping coefficient of rubber tractor tires using dynamic cleat test based on point contact model. Int J Agric & Biol Eng, 2021; 14(1): 157–164.
Puttipipatkajorn A, Puttipipatkajorn A. Spectroscopic measurement approaches in evaluation of dry rubber content of cup lump rubber using machine learning techniques. Int J Agric & Biol Eng, 2021; 14(3): 207–213.
Sabu T K, Vinod K V. Food preferences of the rubber plantation litter beetle, Luprops tristis, a nuisance pest in rubber tree plantations. Journal of Insect Science, 2009; 9(1): 72.
Tanzini M R, Alves S B, Tamai M A, De Moraes G J, Ferla N J. An epizootic of Calacarus heveae (Acari: Eriophyidae) caused by Hirsutella thompsonii on rubber trees. Experimental & applied acarology, 2000; 24(2): 141–144.
Rezende J M, Pereira J M, Araújo W S, Daud R D, Peres A J A. Population dynamics of rubber tree mites. Floresta e Ambiente, 2020; 27(4): 10.1590/2179–8087.017718.
Febbiyanti T R, Kusdiana A P J. Characteristics of rhizobacteria on healthy and white rot-infected rubber trees. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020; 468: 012048.
Liyanage K K, Khan S, Mortimer P E, et al. Powdery mildew disease of rubber tree. Forest Pathology, 2016; 46(2): 90–103.
UN FAO. Rubber tapping. Available: https://www.fao.org/4/AD221E/AD221E06.htm. Accessed on [2024-10-24].
Rodrigo V H L. Adoption of different tapping systems in the rubber industry of Sri Lanka with special reference to low frequency tapping. 2007; 88: 1–21. doi: 10.4038/jrrisl.v88i0.1814
Qi D L, Zhu J L, Huang Y Q, Xie G S, Wu Z X. Factors affecting technology choice behaviour of rubber smallholders: a case study in central Hainan, China. Journal of Rubber Research, 2021; 24: 327–338.
Cheng X Z, Feng Y Y, Guo A T, Huang W J, Cai Z Y, Dong Y Y, et al. Detection of rubber tree powdery mildew from leaf level hyperspectral data using continuous wavelet transform and machine learning. Remote Sensing, 2023; 16(1): 105.
Kaewboonma N, Lertkrai P, Chanakot B, Lertkrai J. Thai rubber leaf disease classification using deep learning techniques. In: AICCC ’23: Proceedings of the 2023 6th Artificial Intelligence and Cloud Computing Conference, 2023; pp.84-91. doi:10.1145/3639592.3639605.
Li R J, Qin W B, He Y T, Li Y D, Ji R B, Wu Y H, et al. Method for the classification of tea diseases via weighted sampling and hierarchical classification learning. Int J Agric & Biol Eng, 2024; 17(3): 211–221.
Yin X, Li W H, Li Z, Yi L L. Recognition of grape leaf diseases using MobileNetV3 and deep transfer learning. Int J Agric & Biol Eng, 2022; 15(3): 184–194.
Liang K, Ren Z Z, Song J P, Yuan R, Zhang Q. Wheat FHB resistance assessment using hyperspectral feature band image fusion and deep learning. Int J Agric & Biol Eng, 2024; 17(2): 240–249.
Eskandari R, Mahdianpari M, Mohammadimanesh F, Salehi B, Brisco B, Homayouni S. Meta-analysis of unmanned aerial vehicle (UAV) imagery for agro-environmental monitoring using machine learning and statistical models. Remote Sensing, 2020; 12(21): 3511.
Olson D, Anderson J. Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. Agronomy Journal, 2021; 113(2): 971–992.
Yang G J, Liu J G, Zhao C J, Li Z H, Huang Y B, Yu H Y, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Frontiers in Plant Science, 2017; 8: 1111.
Michalska-Pożoga I, Tomkowski R, Rydzkowski T, Thakur V K. Towards the usage of image analysis technique to measure particles size and composition in wood-polymer composites. Industrial Crops and Products, 2016; 92: 149–156.
Thorp K R, Dierig D A. Color image segmentation approach to monitor flowering in lesquerella. Industrial Crops and Products, 2011; 34(1): 1150–1159.
Tao X Y, Li Y J, Yan W Q, Wang M J, Tan Z F, Jiang J M, et al. Heritable variation in tree growth and needle vegetation indices of slash pine (Pinus elliottii) using unmanned aerial vehicles (UAVs). Industrial Crops and Products, 2021; 173: 114073.
Zhou D, Li M, Li Y, et al. Detection of ground straw coverage under conservation tillage based on deep learning. Computers and Electronics in Agriculture, 2020; 172: 105369.
Rastogi A, Arora R, Sharma S. Leaf disease detection and grading using computer vision technology & fuzzy logic. In: 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida: IEEE, 2015; pp.500–505. doi: 10.1109/SPIN.2015.7095350.
Wspanialy P, Moussa M. A detection and severity estimation system for generic diseases of tomato greenhouse plants. Computers and Electronics in Agriculture, 2020; 178: 105701.
Liu L Y, Dong Y Y, Huang W J, Du X P, Ma H Q. Monitoring wheat fusarium head blight using unmanned aerial vehicle hyperspectral imagery. Remote Sensing, 2020; 12(22): 3811.
Deng J, Wang R, Yang L J, Lv X, Yang Z Q, Zhang K, et al. Quantitative estimation of wheat stripe rust disease index using unmanned aerial vehicle hyperspectral imagery and innovative vegetation indices. IEEE Transactions on Geoscience and Remote Sensing, 2023; 61: 1–11.
Gao A, Geng A J, Song Y P, Ren L L, Zhang Y, Han X. Detection of maize leaf diseases using improved MobileNet V3-small. Int J Agric & Biol Eng, 2023; 16(3): 225–232.
Wang Y X, Xing M F, Zhang H G, He B B, Zhang Y. Rice false smut monitoring based on band selection of UAV hyperspectral data. Remote Sensing, 2023; 15(12): 2961.
Li N W, Huo L N, Zhang X L. Using only the red-edge bands is sufficient to detect tree stress: A case study on the early detection of PWD using hyperspectral drone images. Computers and Electronics in Agriculture, 2024; 217: 108665.
Corti M, Cavalli D, Cabassi G, et al. Application of a low-cost camera on a UAV to estimate maize nitrogen-related variables. Precision Agriculture, 2019; 20(4): 675–696.
Kanning M, Kühling I, Trautz D, Jarmer T. High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction. Remote Sensing, 2018; 10(12): 2000.
Wang S W, Niu Y X, Ma X Y, Chen S L, Amani, Feng H. Prediction model for nitrogen content of rice leaves during heading stage in cold region based on hyperspectrum. Journal of Agricultural Mechanization Research, 2019; 41(3): 158–164. (in Chinese)
Mazlan S, JAAFAR N M, Wahab A, Sulaiman Z. Major diseases of rubber (Hevea brasiliensis) in Malaysia. Pertanika Journal of Scholarly Research Reviews, 2019; 5(2): 10–21.
Hamid N R A, Ghani Z A, Mahsuri I, Yusoff M A M, Rasib, A W, Yusoff A R M, et al. Rubber leaf disease detection from low altitude remote sensing techniques. Advanced Science Letters, 2018; 24(6): 4281–4285.
Serres E, Lacrotte R, Prévôt J, Clement A, Commere J, Jacob J. Metabolic aspects of latex regeneration in situ for three hevea clone. 1994; pp.79–88.
Cheng H, Tang C, Huang H. The Reyan 7-33-97 rubber tree genome: insight into its structure, composition and application. The Rubber Tree Genome, 2020: 13–40.
Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012; 34(11): 2274–2282.
Swain M J, Ballard D H. Color indexing international journal of computer vision, 1991; 7(1): 11–32.
Lu S Y, Wang B Z. An image retrieval algorithm based on improved color histogram. In: Journal of Physics: Conference Series. IOP Publishing, 2019; 1176(2): 022039.
Lee H S, In Cho S. Spatial color histogram-based image segmentation using texture-aware region merging. Multimedia Tools and Applications, 2022; 81(17): 24573–24600.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.