Identification of automobile transmission fluid using hyperspectral imaging technology
Abstract
Keywords: transmission fluid, hyperspectral image, sparse representation, principal component analysis, identification
DOI: 10.3965/j.ijabe.20140704.009
Citation: Jiang L L, Yu X J, He Y. Identification of transmission fluid of automobile by hyperspectral imaging technology based on sparse representation. Int J Agric & Biol Eng, 2014; 7(4): 81-85.
Keywords
Full Text:
PDFReferences
[References]
Yao M. Identification of the Automatic Transmission Fluid Replacement. Journal of Car Driver, 2004.
Zou W, Fang H, Liu F, Zhou K Y, Bao Y D, He Y. Identification of rapeseed varieties based on hyperspectral imagery. Journal of Zhejiang University (Agriculture & Life Sciences), 2011; 37(2): 175–180.
Cheng G S, Guo J X, Shi Z, Amuti R, Kang Y X. Prediction of the Weight of Xinjiang Fuji Apple by Hyperspectral Imaging Techniques. Journal of Xinjiang Agricultural University, 2011; 34(3): 249–252.
Cai J R, Wang J H, Chen Q S, Zhao J W. Detection of rust in citrus by hyperspectral imaging technology and band ratio algorithm. Transaction of the CSAE, 2009; 25(1): 127–131.
Hong T S, Qiao J, Wang N, Ngadi, M O, Zhao Z X, Li Z. Non-destructive inspection of Chinese pear quality based on hyperspectral imaging technique. Transactions of the CSAE, 2007; 23(2): 151–155.
Xing J, Baerdemaeker J D. Bruise detection on ‘Jonagold’ apples using hyperspectral imaging. Postharvest Biology and Technology, 2005; 37: 152- 162.
Xu S, He J G, Yi Dong, He X G. Nondestructive detection of sugar content in long jujude based on hyperspectral imaging technique. Food and Machinery, 2012; 28(6): 168–170.
Yang S Q, Ning J F, He D J. Identification of varieties of rice based on sparse representation. Transaction of the CSAE, 2011; 27(3): 191–195.
Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE T. Pattern Anal, 2009; 31(2): 210-227.
Li X Z, Wu J, Cui Z M, Chen J M. Sparse representation method of vehicle recognition in complex traffic scenes. Journal of Image and Graphics, 2012; 17(3): 387–392.
Absdi, H. Williams L J. Principal component analysis. WIRES Computational Statistics, 2010; 2: 433–459.
Yang S Q, Ning J F, He D J. Identification of varieties of rice based on sparse representation. Transaction of the CSAE, 2011; 27(3): 191–195.
Koh K, Kim S J, Boyd S. Simple MATLAB solver for l1-regularized least squares problems. http://www.stanford. edu/~ boyd/l1_ls/ Accessed on [2008-05-15].
Pelckmans K, Suykens J A K, Gestel T V, Brabanter J D, Lukas L, Hamers B, et al. Least squares-support vector machines. http://www.esat.kuleuven.be/sista/lssvmlab/ Accessed on [2011-08-16].
Bruckstein A, Donoho D, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 2009; 51(1): 34–81.
Copyright (c)