Review of bacterial cellulose production using agricultural and agroindustrial wastes: Physical and mechanical properties
DOI:
https://doi.org/10.25165/ijabe.v18i5.9466Keywords:
bacterial cellulose (BC), biomaterials, agricultural waste, nanocellulose, Gluconacetobacter, KomagataeibacterAbstract
Bacterial cellulose (BC) is a biopolymer whose properties make it suitable for applications in medicine, pharmaceutics, food, environment, engineering, and chemistry. BC produced from agricultural/industrial material exhibits a wide variety of morphological, physical, and mechanical properties. BC production and yield are dependent on the agricultural material used, the content of nitrogen and phosphorus, the bacterial strain, and culture conditions. In this review, BC production is addressed, focusing on the effect of culture conditions and culture medium on the morphological, physical, and mechanical properties of BC, considering low-cost substrates as culture medium. The main contributions over closely related reviews are: 1) A compilation of BC production data, along with corresponding crystallinity and mechanical or physical properties, is provided to highlight the relationship between crystallinity and these properties within each study; 2) The different culture conditions of each cited study, as well as the blank or control treatment, are included in the data compilation to allow comparison of the effects of the culture conditions within each study; 3) The relationship between microstructure and physical and mechanical properties within each study is discussed; cases of simultaneous achievement of high BC production and either crystallinity or tensile strength are identified. From the data comparison, it follows that the BC production is similar to or better than that for standard Hestrin and Schramm (HS) medium in some studies, and its corresponding crystallinity or mechanical/physical properties are different. Then, a high BC production/yield does not guarantee improvement of crystallinity or physical/mechanical properties. In some cases, the crystallinity index is not significantly modified, but the corresponding physical/mechanical properties are. This implies that considering the physical/mechanical properties corresponding to the BC production/yield data is convenient in experimental studies on BC production using low-cost culture medium. Keywords: bacterial cellulose (BC), biomaterials, agricultural waste, nanocellulose, Gluconacetobacter, Komagataeibacter DOI: 10.25165/j.ijabe.20251805.9466 Citation: Rincón A, Restrepo G M, Hoyos F E. Review of bacterial cellulose production using agricultural and agroindustrial wastes: Physical and mechanical properties. Int J Agric & Biol Eng, 2025; 18(5): 15–25.References
Singahania R R, Patel A K, Tsai M-L, Chen C-W, Dong C D. Genetic modification for enhancing bacterial cellulose production and its applications. Bioengineered, 2021; 12(1): 6793-6807.
Wang J, Tavakoli J, Tang Y. Bacterial cellulose production, properties and applications with different culture methods - A review. Carbohydrate Polymymers, 2019; 219: 63-76.
Navya P V, Gayathri V, Samanta D, Sampath S. Bacterial cellulose: A promising biopolymer with interesting properties and applications. International Journal of Biological Macromolecules, 2022; 220: 435-461.
Sharma P, Mittal M, Yadav A, Aggarwal N K. Bacterial cellulose: Nano-biomaterial for biodegradable face masks - A greener approach towards environment. Environmental Nanotechnolology Monitoring & Management, 2023; 19: 100759.
Lahiri D, Nag M, Dutta B, Dey A, Sarkar T, Pati S, et al. Bacterial cellulose: Production, characterization, and application as antimicrobial agent. International Journal of Molecular Sciences, 2021; 22(23): 12984.
Kumar R, Pathak A, Singh P, Kumar K D. In-situ production and collection of bacterial cellulose on jute and flax mats by static cultivation. Journal of Natural Fibers, 2022; 19(13): 4938-4948.
Swingler S, Gupta A, Gibson H, Kowalczuk M, Heaselgrave W, Radecka I. Recent advances and applications of bacterial cellulose in biomedicine. Polymers (Basel), 2021; 13(3): 412.
Rebelo A R, Archer A J, Chen X, Liu C, Yang G, Liu Y. Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Science and Technology of Advanced Materials, 2018; 19(1): 203-211.
Pogorelova N, Rogachev E, Digel I, Chernigova S, Nardin D. Bacterial cellulose nanocomposites: Morphology and mechanical properties. Materials, 2020; 13(12): 2849.
Cao S, Rathi P, Wu X, Ghim D, Jun Y, Singamaneni S. Cellulose nanomaterials in interfacial evaporators for desalination: A “Natural” choice. Advanced Materials, 2021; 33(28): 2000922.
Faria M, Mohammadkazei F, Aguiar R, Cordeiro N. Agro-industrial byproducts as modification enhancers of the bacterial cellulose biofilm surface properties: An inverse chromatography approach. Industrial Crops and Products, 2022; 177: 114447.
Liu X, Inda M E, Lai Y, Lu T K, Zhao X. Engineered living hydrogels. Advanced Materials, 2022; 34(26): 2201326.
Zhang J T, Hu S M, Shi Z J, Wang Y F, Lei Y Q, Han J, et al. Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy, 2021; 89: 106354.
Urbina L, Corcuera M Á, Gailongo N, Eceiza A, Retegi A. A review of bacterial cellulose: Sustainable production from agricultural waste and applications in various fields. Cellulose, 2021; 28(13): 8229-8253.
Yang M, Ward J, Choy K-L. Nature‐inspired bacterial cellulose/methylglyoxal (BC/MGO) nanocomposite for broad‐spectrum antimicrobial wound dressing. Macromolecular Bioscience, 2020; 20(8): 2000070.
Zhuang G-L, Wu S-Y, Lo Y-C, Chen Y-C, Tung K-L, Tseng H-H. Gluconacetobacter xylinus synthesized biocellulose nanofiber membranes with superhydrophilic and superoleophobic underwater properties for the high-efficiency separation of oil/water emulsions. Journal of Membrane Science, 2020; 605: 118091.
Yang X, Biswas S K, Han J, Tanpichai S, Li M-Ch, Chen C, et al. Surface and interface engineering for nanocellulosic advanced materials. Advanced Materials, 2021; 33(28): 2002264.
Ma Y Y, Lu Y, Yue Y Y, He S J, Jiang S H, Mei C T, et al. Nanocellulose-mediated bilayer hydrogel actuators with thermo-responsive, shape memory and self-sensing performances. Carbohydrate Polymers, 2024; 335: 122067.
Abouelkheir S S, Kamara M S, Atia S M, Amer S A, Youssef M I, Abdelkawy R S, et al. Novel research on nanocellulose production by a marine Bacillus velezensis strain SMR: A comparative study. Scientific Reports, 2020; 10(1): 14202.
Kadier A, Ilyas R A, Huzaifah M R M, Harihastuti N, Sapuan SM, Harussani M M, et al. Use of industrial wastes as sustainable nutrient sources for bacterial cellulose (BC) production: Mechanism, advances, and future perspectives. Polymers (Basel), 2021; 13(19): 3365.
Fernandes I, Pedro A C, Ribeiro V R, Bortolini D G, Ozaki M S C, Maciel G M, et al. Bacterial cellulose: From production optimization to new applications. International Journal of Biological Macromolecules, 2020; 164: 2598-2611.
Zhai X C, Lin D H, Li W W, Yang X B. Improved characterization of nanofibers from bacterial cellulose and its potential application in fresh-cut apples. International Journal of Biological Macromolecules, 2020; 149: 178-186.
Singhania R R, Patel A K, Tseng Y S, Kumar V, Chen C W, Haldar D, et al. Developments in bioprocess for bacterial cellulose production. Bioresource Technology, 2022; 344: 126343.
Rahman S S A, Vaishnavi T, Vidyasri G S, Sathya K, Priyanka P, Venkatachalam P, et al. Production of bacterial cellulose using Gluconacetobacter kombuchae immobilized on Luffa aegyptiaca support. Scientific Reports, 2021; 11(1): 2912.
Torgbo S, Sukyai P. Biodegradation and thermal stability of bacterial cellulose as biomaterial: The relevance in biomedical applications. Polymer Degradation and Stability, 2020; 179: 109232.
Zhong C Y. Industrial-scale production and applications of bacterial cellulose. Frontiers in Bioengineering and Biotechnology, 2020; 8: 1-19.
Gorgieva S, Trček J. Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials, 2019; 9(10): 1352.
Dikshit P K, Kim B S. Bacterial cellulose production from biodiesel-derived crude glycerol, magnetic functionalization, and its application as carrier for lipase immobilization. International Journal of Biological Macromolecules, 2020; 153: 902-911.
Abba M, Nyakuma B B, Ibrahim Z, Ali J B, Razak S I A, Salihu R. Physicochemical, morphological, and microstructural characterisation of bacterial nanocellulose from gluconacetobacter xylinus BCZM. Journal of Natural Fibers, 2020; 19(11): 4368-4379.
Wahid F, Huang L H, Zhao X Q, Li W C, Wang Y Y, Jia S R, et al. Bacterial cellulose and its potential for biomedical applications. Biotechnology Advances, 2021; 53: 107856.
He F Q, Yang H M, Zeng L L, Hu H, Hu C. Production and characterization of bacterial cellulose obtained by Gluconacetobacter xylinus utilizing the by-products from Baijiu production. Bioprocess and Biosystems Engineering, 2020; 43(5): 927-936.
Hussanin Z, Sajjad W, Khan T, Wahid F. Production of bacterial cellulose from industrial wastes: A review. Cellulose, 2019; 26(5): 2895-2911.
Shavandi A, Hosseini S, Okoro O V, Nie L, Eghbali Badani F, Melchels F. 3D bioprinting of lignocellulosic biomaterials. Advanced Healthcare Materials, 2020; 9(24): 2001472.
Xu S, Xu S J, Ge X L, Tan L P, Liu T J. Low-cost and highly efficient production of bacterial cellulose from sweet potato residues: Optimization, characterization, and application. International Journal of Biological Macromolecules, 2022; 196: 172-179.
Fernandes I D A A, Maciel G M, de Oliveira A L M S, Miorim A J F, Fontana J D, Ribeiro V R, et al. Hybrid bacterial cellulose‐collagen membranes production in culture media enriched with antioxidant compounds from plant extracts. Polymer Engineering & Science, 2020; 60(11): 2814-2826.
Poddar M K, Dikshit P K. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. Nano Select, 2021; 2(9): 1605-1628.
El-Gendi H, Taha T H, Ray J B, Saleh A K. Recent advances in bacterial cellulose: A low-cost effective production media, optimization strategies and applications. Cellulose, 2022; 29(14): 7495-7533.
Saleh A K, El-Gendi H, Soliman N A, El-Zakawy W K, Abbel-Fattah Y R. Bioprocess development for bacterial cellulose biosynthesis by novel Lactiplantibacillus plantarum isolate along with characterization and antimicrobial assessment of fabricated membrane. Scientific Reports, 2022; 12(1): 2181.
Ul-Islam M, Ullah M W, Khan S, Park J K. Production of bacterial cellulose from alternative cheap and waste resources: A step for cost reduction with positive environmental aspects. Korean Journal of Chemical Engineering, 2020; 37(6): 925-937.
Akintunde M O, Adebayo-Tayo B C, Ishola M M, Zamani A, Horváth I S. Bacterial cellulose production from agricultural residues by two Komagataeibacter sp. Strains. Bioengineered, 2022; 13(4): 10010-10025.
Nyakuma B B, Wong S, Utume L N, Abdullah T A T, Abba M, Oladokun O, et al. Comprehensive characterisation of the morphological, thermal and kinetic degradation properties of Gluconacetobacter xylinus synthesised bacterial nanocellulose. Journal of Natural Fibers, 2022; 19(13): 6255-6268.
Atykyan N, Revin V, Shutova V. Raman and FT-IR Spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. AMB Express, 2020; 10(1): 84.
Senthilnathan S, Rahman S S A, Pasupathi S, Venkatachalam P, Karuppiah S. Stoichiometric analysis and production of bacterial cellulose by gluconacetobacter liquefaciens using borassus flabellifer L. Jaggery. Applied Biochemistry and Biotechnology, 2022; 194(8): 3645-3667.
Yu K, Spiesz E M, Balasubramanian S, Schemieden D T, Meyer A S, Aubin-Tam M-E. Scalable bacterial production of moldable and recyclable biomineralized cellulose with tunable mechanical properties. Cell Reports Physical Science, 2021; 2(6): 100464.
Provin A P, dos Reis V O, Hilesheim S E, Bianchet R T, de Aguiar Dutra A R, Cubas A L V. Use of bacterial cellulose in the textile industry and the wettability challenge - A review. Cellulose, 2021; 28(13): 8255-8274.
Sperotto G, Stasiak L G, Godoi J P M G, Gabiatti N C, De Souza S S. A review of culture media for bacterial cellulose production: Complex, chemically defined and minimal media modulations. Cellulose, 2021; 28(5): 2649-2673.
Ahmed J, Gultekinoglu M, Edirisinghe M. Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnology Advances, 2020; 41: 107549.
Zefirov V V, Sadykova V S, Ivanenko I P, Kuznetsova O P, Butenko I E, Gromovykh T I, et al. Liquid-crystalline ordering in bacterial cellulose produced by Gluconacetobaсter hansenii on glucose-containing media. Carbohydrate Polymers, 2022; 292: 119692.
Yang F, Cao Z, Li C, Chen L, Wu G, Zhou X, et al. A recombinant strain of Komagataeibacter xylinus ATCC 23770 for production of bacterial cellulose from mannose-rich resources. New Biotechnology, 2023; 76: 72-81.
Almeida A P, Saraiva J N, Cavaco G, Portela R P, Leal C R, Sobral R G, et al. Crosslinked bacterial cellulose hydrogels for biomedical applications. European Polymer Journal, 2022; 177: 111438.
Laavanya D, Shirkole S, Balasubramanian P. Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. Journal of Cleaner Production, 2021; 295: 126454.
Aswini K, Gopal N O, Uthandi S. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnology, 2020; 20(1): 46.
Saaveda-Sanabria O L, Durán D, Cabezas J, Hernández I, Blanco-Tirado C, Combariza M Y. Cellulose biosynthesis using simple sugars available in residual cacao mucilage exudate. Carbohydrate Polymers, 2021; 274: 118645.
Żywicka A, Ciecholewska-Juśko D, Drozd R, Rakoczy R, Konopacki M, Kordas M, et al. Preparation of komagataeibacter xylinus inoculum for bacterial cellulose biosynthesis using magnetically assisted external-loop airlift bioreactor. Polymers (Basel), 2021; 13(22): 3950.
Fadakar Sarkandi A, Montazer M, Harifi T, Mahmoudi Rad M. Innovative preparation of bacterial cellulose/silver nanocomposite hydrogels: In situ green synthesis, characterization, and antibacterial properties. Journal of Applied Polymer Science, 2021; 138(6): 49824.
Zhou J, Sun J, Ullah M, Wang Q, Zhang Y, Cao G, et al. Polyethylene terephthalate hydrolysate increased bacterial cellulose production. Carbohydrate Polymers, 2023; 300: 120301.
Blanco Parte F G, Santoso S P, Chou C C, Verma V, Wang H T, Ismadji S, et al. Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology, 2020; 40(3): 397-414.
Abol-Fotouh D, Hassan M A, Shokry H, Roig A, Azab M S, Kashyout A E-H B. Bacterial nanocellulose from agro-industrial wastes: Low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Scientific Reports, 2020; 10(1): 3491.
Chibrikov V, Pieczywek P M, Zdunek A. Tailor-made biosystems - Bacterial cellulose-based films with plant cell wall polysaccharides. Polymer Reviews, 2023; 63(1): 40-66.
Cazón P, Vásquez M. Improving bacterial cellulose films by ex-situ and in-situ modifications: A review. Food Hydrocoll, 2021; 113: 106514.
Stumpf T R, Yang X Y, Zhang J C, Cao X D. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Materials Science and Engineering: C, 2018; 82: 372-383.
Poletti M, Ornaghi H, Zattera A. Native cellulose: Structure, characterization and thermal properties. Materials, 2014; 7(9): 6105-6119.
Du R P, Zhao F K, Peng Q, Zhou Z J, Han Y. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydrate Polymers, 2018; 194: 200-207.
Meza-Contreras J C, Manriquez-Gonzalez R, Gutiérrez-Ortega J A, Gonzalez-Garcia Y. XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses. Carbohydrate Research, 2018; 461: 51-59.
Płoska J, Garbowska M, Pluta A, Stasiak-Różańska L. Bacterial cellulose - Innovative biopolymer and possibilities of its applications in dairy industry. International Dairy Journal, 2023; 140: 105586.
Gayathri G, Srinikethan G. Bacterial Cellulose production by K. saccharivorans BC1 strain using crude distillery effluent as cheap and cost effective nutrient medium. International Journal of Biological Macromolecules, 2019; 138: 950-957.
Fang L, Catchmark J M. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains. Carbohydrate Polymers, 2015; 115: 663-669.
Quijano L, Rodrigues R, Fischer D, Tovar-Castro J D, Payne A, Navone L, et al. Bacterial cellulose cookbook: A systematic review on sustainable and cost-effective substrates. Journal of Bioresources and Bioproducts, 2024; 9: 379-409.
Zoghlami A, Paës G. Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Frontiers in Chemistry, 2019; 7: 874.
Wang H L, Qi X H, Gao S, Zhang Y F, An Y F. Biochemical characterization of an engineered bifunctional xylanase/feruloyl esterase and its synergistic effects with cellulase on lignocellulose hydrolysis. Bioresource Technology, 2022; 355: 127244.
Li G, Wang Z H, Zuo L L, Zhang T, Xiao W B, Yang T L, et al. Regulating phenol tar in pyrolysis of lignocellulosic biomass: Product characteristics and conversion mechanisms. Bioresource Technology, 2024; 409: 131259.
Huang Z, Zhang T, Wang C, Xiao W, Wang Z, Tursunov O, et al. Exploring the factors influencing the co-pyrolysis of walnut shells, pistachio shells, and polypropylene based on thermal behavior, kinetics and reaction mechanism. Case Studies in Thermal Engineering, 2024; 65: 105679.
Souza K C D, Trindade N M, Amorim J D P, Nascimento H A. D, Costa A F S, Henrique M A, et al. Kinetic study of a bacterial cellulose production by komagataeibacter rhaeticus using coffee grounds and sugarcane molasses. Materials Research, 2021; 24(3). doi: 10.1590/1980-5373-mr-2020-0454.
El-Naggar N E-A, El-Malkey S E, Abu-Saied M A, Mohammed A B A. Exploration of a novel and efficient source for production of bacterial nanocellulose, bioprocess optimization and characterization. Scientific Reports, 2022; 12(1): 18533.
Dhar P, Pratto B, Gonçalves Cruz A J, Bankar S. Valorization of sugarcane straw to produce highly conductive bacterial cellulose/graphene nanocomposite films through in situ fermentation: Kinetic analysis and property evaluation. Journal of Cleaner Production, 2019; 238: 117859.
Lee A C, Salleh M M, Ibrahim M F, Bahrin E K, Jenol M A, Abd-Aziz S. Pineapple peel as alternative substrate for bacterial nanocellulose production. Biomass Conversion and Biorefinery, 2024; 14(4): 5541-5549.
Souza E F, Furtado M R, Carvalho C W P, Freitas-Silva O, Gottschalk L M F. Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses. International Journal of Biological Macromolecules, 2019; 146: 285-289.
Yim S M, Song J E, Kim H R. Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry, 2017; 59: 26-36.
Tsouko E, Maina S, Ladakis D, Kookos I K, Koutinas A. Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renew Energy, 2020; 160: 944-954.
Cheng K-C, Catchmark J M, Demirci A. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 2009; 16(6): 1033-1045.
Zhou J G, Gu F, Yang H J, Cao G, Xu W L, Sun S, et al. Sequential fermentation strategy improves microbial conversion of waste jasmine flower to bacterial cellulose with antibacterial properties. Industrial Crops and Products, 2022; 185: 115147.
Efthymiou M N, Tsouko E, Pateraki C, Papagiannopoulos A, Tzamalis P, Pispas S, et al. Property evaluation of bacterial cellulose nanostructures produced from confectionery wastes. Biochemical Engineering Journal, 2022; 186: 108575.
Santoso S P, Lin S-P, Wang T-Y, Ting Y, Hsieh C-W, Yu R-C, et al. Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose. International Journal of Biological Macromolecules, 2021; 175: 526-534.
Guo X, Cavka A, Jönsson L J, Hong F. Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microbial Cell Factories, 2013; 12(1): 93.
van Zyl E M, Kennedy M A, Nason W, Fenlon S J, Young E M, Smith L J, et al. Structural properties of optically clear bacterial cellulose produced by Komagataeibacter hansenii using arabitol. Biomaterials Advances, 2023; 148: 213345.
Andriani D, Apriyana A Y, Karina M. The optimization of bacterial cellulose production and its applications: A review. Cellulose, 2020; 27(12): 6747-6766.
Amarasekara A S, Wang D, Grady T L. A comparison of kombucha SCOBY bacterial cellulose purification methods. SN Applied Sciences, 2020; 2(2): 240.
Pigaleva M A, Bulat M V, Gromovykh T I, Gavryushina I A, Lutsenko S V, Gallyamov M O, et al. A new approach to purification of bacterial cellulose membranes: What happens to bacteria in supercritical media? Journal of Supercritical Fluids, 2019; 147: 59-69. doi: 10.1016/j.supflu.2019.02.009.
Amin M C I M, Abadi A G, Katas H. Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydrate Polymers, 2014; 99: 180-189.
Gao G, Liao Z T, Cao Y Y, Zhang Y B, Zhang Y, Wu M M, et al. Highly efficient production of bacterial cellulose from corn stover total hydrolysate by Enterobacter sp. FY-07. Bioresource Technology, 2021; 341: 125781.
Hassan S S, Williams G A, Jaiswal A K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 2018; 262: 310-318.
Devi A, Singh A, Bajar S, Pant D, Din Z U. Ethanol from lignocellulosic biomass: An in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. Journal of Environmental Chemical Engineering, 2021; 9(5): 105798.
Bhutto A W, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi A A, et al. Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 2017; 122: 724-745.
Taokaew S, Nakson N, Zhang X, Kongklieng P, Kobayashi T. Biotransformation of okara extracted protein to nanocellulose and chitin by Gluconacetobacter xylinus and Bacillus pumilus. Bioresource Technology Reports, 2022; 17: 100904.
Padmanabhan S K, Lionetto F, Nisi R, Stopp.M, Licciulli A. Sustainable production of stiff and crystalline bacterial cellulose from orange peel extract. Sustainability, 2022; 14(4): 2247.
Peters M S, Timmerhaus K D, West R E. Plant Design And Economics For Chemical Engineers. New York: McGraw-Hill. 2003. 988 p.
Behera B, Laavanya D, Balasubramanian P. Techno-economic feasibility assessment of bacterial cellulose biofilm production during the Kombucha fermentation process. Bioresource Technology, 2022; 346: 126659.
Rackov N, Janßen N, Akkache A, Drotleff B, Beyer B, Scoppola E, et al. Bacterial cellulose: Enhancing productivity and material properties through repeated harvest. Biofilm, 2025; 9: 100276.
Downloads
Published
How to Cite
Issue
Section
License
IJABE is an international peer reviewed open access journal, adopting Creative Commons Copyright Notices as follows.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).