Effects of spatial and temporal weather data resolutions on streamflow modeling of a semi-arid basin, Northeast Brazil

Danielle de Almeida Bressiani, Raghavan Srinivasan, Charles Allan Jones, Eduardo Mario Mendiondo

Abstract


One major difficulty in the application of distributed hydrological models is the availability of data with sufficient quantity and quality to perform an adequate evaluation of a watershed and to capture its dynamics. The Soil & Water Assessment Tool (SWAT) was used in this study to analyze the hydrologic responses to different sources, spatial scales, and temporal resolutions of weather inputs for the semi-arid Jaguaribe watershed (73 000 km2) in northeastern Brazil. Four different simulations were conducted, based on four groups of weather and precipitation inputs: Group 1- SWAT Weather Generator based on monthly data from four airport weather stations and daily data based on 124 local rain gauges; Group 2- daily local data from 14 weather stations and 124 precipitation gauges; Group 3- Daily values from a global coupled forecast model (NOAA’s Climate Forecast System Reanalysis - CFSR); and Group 4- CFSR data with 124 local precipitation gauges. The four simulations were evaluated using multiple statistical efficiency metrics for four streamflow gauges, using: Nash-Sutcliffe coefficient (NSE), determination coefficient (R2), the ratio of the root mean square to the standard deviation of the observed data (RSR), and the percent bias (PBIAS). The Group 4 simulation performed best overall (provided the best statistical values) with results ranked as “good” or “very good” on all four efficiency metrics suggesting that using CFSR data for weather parameters other than precipitation, coupled with precipitation data from local rain gauges, can provide reasonable hydrologic responses. The second best results were obtained with Group 1, which provided “good” results in three of four efficiency metrics. Group 2 performed worse overall than Groups 1 and 4, probably due to uncertainty related to daily measures and a large percentage of missing data. Groups 2 and 3 were “unsatisfactory” according to three or four of the efficiency metrics, indicating that the choice of weather data is very important.
Keywords: climate data resolution, hydrology, SWAT model, semi-arid basin, Brazil
DOI: 10.3965/j.ijabe.20150803.970 Online first on [2015-03-20]

Citation: Bressiani D A, Srinivasan R, Jones C A, Mendiondo E M. Effects of spatial and temporal weather data resolutions on streamflow modeling of a semi-arid basin, Northeast Brazil. Int J Agric & Biol Eng, 2015; 8(3): 125-139.

Keywords


climate data resolution, hydrology, SWAT model, semi-arid basin, Brazil

Full Text:

PDF

References


Schuol J, Abbaspour K C. Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. Advances in Geosciences, 2006; 9: 137–143. doi: 10.5194/adgeo-9-137-2006

Kite G W, Haberlandt U. Atmospheric model data for macroscale hydrology. Journal of Hydrology, 1999; 217: 303–313. doi: 10.1016/S0022-1694(98)00230-3.

Rivington M, Matthews K B, Bellocchi G, Buchan K. Evaluating uncertainty introduced to process-based simulation model estimates by alternative sources of meteorological data. Agricultural Systems, 2006; 88: 451–471. doi: 10.1016/j. agsy.2005.07.004

Arnold J G, Allen P M, Bernhhardt G. A comprehensive surface groundwater flow model. Journal of Hydrology, 1993; 142: 47–69. doi: 10.1016/0022-1694(93)90004-S

Arnold J G, Srinivasan R, Muttiah R S, Williams J R. Large area hydrologic modeling and assessment-Part 1: Model Development. Journal of the American Water Resources Association, 1998; 34(1): 73–89. doi: 10.1111/j. 1752-1688. 1998.tb05961.x

Yu Z. Chapter 172: Hydrology: modeling and prediction. In Encyclopedia of Atmospheric Science. Academic Press, 2003, 3. pp. 980–986.

Norton J P. Prediction for decision-making under uncertainty. In: Proceedings of MODSIM 2003 International Congress on Modeling and Simulation: Integrative modeling of bhiophysical, social and economic systems for resource management solutions, 14-17 July, 2003, Townsville, Australia, 2003; 4. pp. 1517-1522. Available: http://www.mssanz.org.au/MODSIM03/Volume_03/03_Norton.pdf

Yu M, Chen X, Li L, Bao A, Paix M J. Streamflow Simulation by SWAT Using Different Precipitation Sources in Large Arid Basins with Scarce Raingauges. Water Resources Management, 2011; 25: 2669–2681. Doi: 10.1007/ s11269-011-9832-z

Wilk J, Kniveton D, Andersson L, Layberry R, Todd M C, Hughes D, et al. Estimating rainfall and water balance over the Okavango River Basin for hydrological applications. Journal of Hydrology, 2006; 331: 18–29. Doi: 10.1016/j. jhydrol.2006.04.049

Ercan M B, Goodall J L. Estimating Watershed-Scale Precipitation by Combining Gauge- and Radar-Derived Observations. Journal of Hydrologic Engineering, 2013; 18(8): 983-994. Doi: 10.1061/(ASCE)HE.1943-5584. 0000687.

Bennett M E, Tobin K J. The evolution of remotely sensed precipitation products for hydrological applications with a focus on the tropical rainfall measurement mission (TRMM).

Journal of Environmental Hydrology, 2013; 21: 1–16.

Price K, Purucker S T, Kraemer S R, Babendreier J E, Knightes C D. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales. Hydrological Processes, 2013; 28(9): 3505–3520. Doi: 10.1002/hyp.9890.

El-Sadek A., Bleiweiss M., Shukla M, Guldan S, Fernald A. Alternative climate data sources for distributed hydrological modelling on a daily time step. Hydrological Processes, 2011; 25: 1542–1557. Doi: 10.1002/hyp.7917

Fuka D R., Walter M T, MacAlister C, Degaetano A T, Steenhuis T S, Easton Z M. Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrological Processes, 2013: 28(22): 5613–5623. Doi: 10.1002/hyp.10073.

Strauch M, Bernhofer C, Koide S, Volk M, Lorz C, Makeschin F. Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. Journal of Hydrology, 2012; 414-415: 413–424. doi: 10.1016/j. jhydrol.2011.11.014.

Zhenyao S, Lei C, Qian L, Ruimin L, Qian H. Impact of spatial rainfall variability on hydrology and nonpoint source pollution modeling. Journal of Hydrology, 2012; 472–473: 205–215. Doi: 10.1016/j.jhydrol.2012.09.019.

Galván L, Olías M, Izquierdo T, Cerón J C, Fernández de Villarán R. Rainfall estimation in SWAT: An alternative method to simulate orographic precipitation. Journal of Hydrology, 2014; 509: 257–265. Doi: 10.1016/j.jhydrol. 2013.11.044

Sexton A M, Sadeghi A M, Zhang X, Srinivasan R, Shirmohammadi A. Using NEXRAD and rain gauge precipitation data for hydrologic calibration of SWAT in a Northeastern watershed. American Society of Agricultural and Biological Engineer, 2010; 53(5): 1501–1510. doi: 10.1061/(ASCE)HE.1943-5584.0000618

Sharpley A N, Williams J R. EPIC-Erosion Productivity Impact Calculator, 1. Model Documentation. U. S. Department of Agriculture, Agricultural Research Service, Tech Bull, 1990; No. 1768.

Gatto L C S. (supervisor), Rivas M P, Fortunato F F, Santiago Filho A L, Oliveira F C, Cunha R C M B, et al. Diagnóstico ambiental da bacia do rio jaguaribe: diretrizes gerais para a ordenação territorial. Ministério de Planejamento e Orçamento. Fundação Instituto Brasileiro de Geografia e Estatística- IBGE. Diretoria de Geociências. 1ª Divisão de Geociências do Nordeste – DIGEO 1/ NE.1. 1999. Available on: ftp://geoftp.ibge.gov.br/documentos/ recursos_naturais/diagnosticos/jaguaribe.pdf

Marins R V, Paula Filho F J, Rocha C A S. Phosphorus geochemistry as a proxy of environmental estuarine processes at the Jaguaribe River, northeastern Brazil. Quim. Nova., 2007; 30(5): 1208–1214.

Instituto Brasileiro de Geografia e Estatística – IBGE. Censo Demográfico 2010. Available on: http://cidades.ibge.gov.br/ xtras/ perfil.php?codmun=230440〈=_EN

Krol M, Jaeger A, Bronstert A, Guntner A. Integrated modelling of climate, water, soil, agricultural and socio-economic processes: A general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil. Journal of Hydrology, 2006; 328: 417– 431. doi: 10.1016/j.jhydrol.2005.12.021

Krol M, Bronstert A. Regional integrated modelling of climate change impacts on natural resources and resource usage in semi-arid Northeast Brazil. Environmental Modelling & Software, 2007; 22: 259–268. doi: 10.1016/ j.envsoft. 2005.07.022

Gassman P W, Reyes M R, Green C H, Arnold J G. The soil and water assessment tool: Historical development, applications, and future research directions. Transactions ASAE, 2007; 50(4): 1211–1250. Available: http://www.card. iastate.edu/environment/items/asabe_swat.pdf. Accessed on: [2013-02-15].

Arnold J G, Moriasi D N, Gassman P W, Abbaspour K C, White M J, Srinivasan R, et al. SWAT: model use, calibration, and validation. Trans. ASABE, 2012; 55(4): 1491–1508. doi: 10.13031/2013.42256.

Gassman P W, Sadeghi A M, Srinivasan R. Applications of the SWAT Model Special Section: Overview and Insights. Journal of Environmental Quality, 2014; 43; 1–8. doi: 10.2134/jeq2013.11.0466

Douglas-Mankin K R, Srinivasan R, Arnold J G. Soil and Water Assessment Tool (SWAT) model: Current Developments and Applications. Transactions of the ASABE, 2010; 53(5): 1423–1431. Available: http://swat. tamu.edu/media/87820/douglas-mankin-et-al-2010-trans-asabe-article.pdf. Accessed on [2014-09-06].

Daniel E B, Camp J V, LeBoeuf E J, Penrod J R, Dobbins J P, Abkowitz M D. Watershed Modeling and its Applications: A State-of-the-Art Review. The Open Hydrology Journal, 2011; 5: 26–50. DOI: 10.2174/1874378101105010026.

Yang J, Reichert P, Abbaspour K. C, Xia H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology. 2008; 358: 1–23. doi: 10.1016/j.jhydrol.2008.05.012

Neitsch S L, Arnold J G, Kiniry J R, Srinivasan R, Williams J R. Soil and Water Assessment Tool Theoretical Documentation: Version 2005. Temple, TX: Grassland, Soil and Water Research Laboratory, Agricultural Research Service. 2005a. Available: www.brc.tamus.edu/swat/doc.html. Accessed on [2011-07-10].

Demirel M C, Venancio A, Kahya E. Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Advances in Engineering Software. 2009; 40: 467–473. doi: 10.1016/j.advengsoft.2008.08.002.

FUNCEME and World Bank: Adapting Water Resources Planning and Operation to Climate Variability and Climate Change in Selected River Basin in Northeast Brazil. http://www.funceme.br/nlta/index.php?option=com_content&view=frontpage&Itemid=28〈=en. Accessed on [2011-06-11]

USGS- United States Geological Survey 2004. Shuttle Radar Topography Mission, 3 Arc Second scene SRTM, Unfilled Unfinished 2.0, Global Land Cover Facility, University of Maryland, College Park, Maryland. Available: http://earthexplorer.usgs.gov/. Accessed on [2011-07-13].

MA/SUDENE. Exploratory - Recognition Map of Soils for Ceara State.(Mapa Exploratório-Reconhecimento de Solos do Estado do Ceará). Scale 1:600.000. Vectorized by Ceara’s Foundation of Meterology and Water Resources (Fundação Cearense de Meterologia e Recursos Hídricos)- FUNCEME. 1973.

Winchell M, Srinivasan R, Di Luzio M, Arnold J. ARCSWAT interface for SWAT2005: User’s Guide. Texas Agricultural Experiment Station and USDA Agricultural Research Service, Temple, Texas. 2007. Available: http://www.geology.wmich.edu/sultan/5350/Labs/ArcSWAT_ Documentation.pdf. Accessed on [2013-02-10].

ISRIC - World Soil Information. Available: http://www. isric.org/. Accessed on [2011-07-1].

Saxton K E, Rawls WJ. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of Agronomy Journal, 2006; 70(5); 1569–1578. doi: 10.2136/sssaj2005.0117.

IBGE- Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal. Diretoria de Pesquisas. Coordenação de Agropecuária. IBGE. 2009. Available: http://www.ibge.gov.br/home/estatistica/economia/pam/2009/ tabelas_pdf/tabela02.pdf. Accessed on [2011-07-25].

Barreto P D. Recursos genéticos e programa de melhoramento de feijão-de-corda no Ceará: avanços e perspectivas. In: QUEIRÓZ M A de; GOEDERT C O, RAMOS S R R (Ed). Recursos Genéticos e Melhoramento de Plantas para o Nordeste Brasileiro. Petrolina-PE: Embrapa Semi-Árido/Brasília-DF: Embrapa Recursos Genéticos e Biotecnologia, 1999. Available: http://www.cpatsa. embrapa.br. Accessed on [2013-02-02].

ANA - Agência Nacional de Águas. 2011. Hydrologic Data – Precipitation historic records, Brasil. Available on:

http://hidroweb.ana.gov.br/. Accessed on [2011-06-10].

National Climatic Data Center. National Oceanic and

Atmospheric Administration, NOAA. Monthly Climatic Data for the World. Available on: http://www.ncdc. noaa.gov/IPS/mcdw/mcdw.html. Accessed on [2011-07-01].

INMET – Instituto Nacional de Meterologia. Banco de Dados Metológicos para Ensino e Pesquisa (BDMEP). Climate Database for Research and Education. Available on: http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep. Accessed on [2013-02-01].

Allen R G, Pereira L S, Raes D, Smith M. Crop evapotranspiration (guidelines for computing crop water requirements). FAO Irrigation and Drainage Paper No. 56. FAO, Rome, Italy. 1998. pp 290.

Smith M. CROPWAT, a computer program for irrigation planning and management. FAO Irrigation and Drainage Paper 46, FAO, Rome. 1992.

Linacre E. Climate and Data Resources: A Reference and Guide. Routledge, London, 1992. p365.

Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, et al. The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc. 2010; 91; 1015–1057; doi: 10.1175/2010 BAMS3001.1.

National Climatic Data Center. National Oceanic and Atmospheric Administration, NOAA. National Centers for Environmental Prediction Climate Forecast System Reanalysis- CFSR. Available on: http://globalweather. tamu.edu/. Accessed on [2013-02-01].

Moriasi D, Arnold J G, Van Liew M W, Bingner R, Harmel R, Veith T L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 2007; 50: 885–900. doi: http://ddr.nal.usda.gov/handle/10113/9298.

Krause P, Boyle D P, Base F. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 2005; 5: 89–97. doi: 10.5194/ adgeo-5-89-2005.

Neitsch S L, Arnold J G, Kiniry J R, Williams J R. Soil and Water Assessment Tool Theoretical Documentation: Version 2009. Grassland, Soil and Water Research Laboratory – Agricultural Research Service, Blackland Research Center – Texas AgriLife Research. Texas Water Resources Institute Technical Report No. 406, College Station, Texas. 2011, p 618.

Migliaccio K W, Chaubey I. Spatial Distributions and Stochastic Parameter Influences on SWAT Flow and Sediment Predictions. Journal of Hydrologic Engineering. 2008; 13(4): 258–269. doi: 10.1061/(ASCE)1084-0699(2008) 13:4(258).

Wu K, Johnston C A. Hydrologic response to climatic variability in a Great Lakes Watershed: A case study with the SWAT model. Journal of Hydrology, 2007; 337(1–2): 187–199. doi: 10.1016/j.jhydrol.2007.01.030.

Santhi C, Arnold J G, Williams J R, Dugas W A, Srinivasan R, Hauck L M.. Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association, 2001; 37(5): 1169- 1188. doi: 10.1111/j.1752-1688.2001.tb03630.x.

Gupta H, Wagener T, Liu Y. Reconciling theory with observations: elements of diagnostic approach to model evaluation. Hydrological Processes. Bognor Regis, 2008; 22 (18): 3802–3813. doi: 10.1002/hyp.6989.

Looper J P, Vieux B E. An assessment of distributed flash flood forecasting accuracy using radar and rain gauge input for a physics-based distributed hydrologic model. Journal of Hydrology, 2012. 412–413: 114–132. doi: 10.1016/ j.jhydrol. 2011.05.046.

Neitsch S L, Arnold J G, Kiniry J R, Srinivasan R, Williams J R. Soil and Water Assessment Tool User’s Manual, Version 2000. Texas Water Resources Institute, College Station, Texas TWRI Report TR-192, 2002.




Copyright (c)



2023-2026 Copyright IJABE Editing and Publishing Office