Challenges in using an analog uncooled microbolometer thermal camera to measure crop temperature
Abstract
Keywords: analog thermal camera, uncooled microbolometer, canopy temperature, cereals, UAV
DOI: 10.3965/j.ijabe.20140704.007
Citation: Kusnierek K, Korsaeth A. Challenges in using an analog uncooled microbolometer thermal camera to measure crop temperature. Int J Agric & Biol Eng, 2014; 7(4): 60-74.
Keywords
Full Text:
PDFReferences
Jackson R D, Reginato R J, Idso S B. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resour. Res., 1977; 13(3): 651–656, doi:10.1029/WR013i003p00651.
Cohen Y, Alchanatis V, Meron M, Saranga Y, Tsipris J. Estimation of leaf water potential by thermal imagery and spatial analysis. Journal of Experimental Botany, 2005; 56(417): 1843–52. doi:10.1093/jxb/eri174.
Thomson S J, Ouellet-Plamondon C M, DeFauw S L, Huang Y, Fisher D K, English P J. Potential and Challenges in Use of Thermal Imaging for Humid Region Irrigation System Management. Journal of Agricultural Science, 2012; 4(4): 103–116. doi:10.5539/jas.v4n4p103.
Jones H G, Stoll M, Santos T, de Sousa C, Chaves M M, Grant O M. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. Journal of Experimental Botany, 2002; 53(378): 2249–2260. doi:10.1093/jxb/erf083.
Leinonen I, Grant O M, Tagliavia C P P, Chaves M M, Jones H G. Estimating stomatal conductance with thermal imagery. Plant, Cell and Environment, 2006; 29(8): 1508– 1518. doi:10.1111/j.1365-3040.2006.01528.x.
Jones H G, Serraj R, Loveys B R, Xiong L, Wheaton A, Price A H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Functional Plant Biology, 2009; 36, 978–989. doi:10.1071/FP09123.
Munns R, James R, Sirault X R R, Furbank R T, Jones H G. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. Journal of Experimental Botany, 2010; 61(13): 3499–3507. doi:10. 1093/jxb/erq199.
Vadivambal R, Jayas D S. Applications of Thermal Imaging in Agriculture and Food Industry—A Review. Food and Bioprocess Technology, 2010; 4(2): 186–199. doi:10.1007/s11947-010-0333-5.
Johnson J E, Shaw J A, Lawrence R, Nugent P W, Dobeck L M, Spangler L H. Long-wave infrared imaging of vegetation for detecting leaking CO2 gas. Journal of Applied Remote Sensing, 2012; 6(1): 063612: 1–9. doi:10.1117/ 1.JRS.6.063612.
Bhan R K, Saxena R S, Jalwania C R, Lomash S K.
Uncooled Infrared Microbolometer Arrays and their Characterisation Techniques. Defence Science Journal, 2009; 59(6): 580–589.
FLIR®. Does Tau or Quark, along with certain software, allow for thermography and temperature characterization? 2013. http://www.flir.com/cvs/cores/knowledgebase/index. cfm?view=35837. Accessed on [15.05.2013].
Machin G, Simpson R, Broussely M. Calibration and validation of thermal imagers. In: 9th International Conference on Quantitative InfraRed Thermography. July 2-5, 2008, Krakow, Poland. pp. 1–8.
Bower S M, Kou J, Saylor J R. A method for the temperature calibration of an infrared camera using water as a radiative source. The Review of scientific instruments, 2009; 80(9): 095–107. doi:10.1063/1.3213075.
Nugent P W, Shaw J A, Pust N J. Correcting for focal-plane-array temperature dependence in microbolometer infrared cameras lacking thermal stabilization. Optical Engineering, 2013; 52(6): 061304. doi:10.1117/1.OE.52.6. 061304.
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0, http://www.R-project.org.
MathWorks Inc. MATLAB, version 7.7.0, 2008. MathWorks Inc., Natick, Massachusetts.
Gu C. Multidimensional Smoothing with Smoothing Splines. In Smoothing and Regression: Approaches, Computation, and Application, ed. M. G. Schimek. New York: Wiley, 2000.
Cleveland W S, Grosse E, Shyu W M. Local regression models. In: Chambers J M, Hastie T J (Ed.). Statistical Models in S. Wadsworth & Brooks/Cole, 1992. 317 p.
Bouguet J Y. Camera Calibration Toolbox for MATLAB, 2010. http://www.vision.caltech.edu/bouguetj/calib_doc/. Accessed on [10.06.2013].
Yahyanejad S, Misiorny J, Rinner B. Lens distortion correction for thermal cameras to improve aerial imaging with small-scale UAVs. In 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE). Montreal, QC, 17-18 Sept. 2011: IEEE. pp. 231–236. doi:10.1109/ROSE.2011.6058528
Luhmann T, Ohm J, Piechel J, Roelfs T. Geometric calibration of thermographic cameras. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5, Commission V Symposium, Newcastle upon Tyne, UK, 2010. pp. 411–416.
Berni J A J, Member S, Zarco-Tejada P J, Suárez L, Fereres E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Transactions on Geoscience and Remote Sensing, 2009; 47(3): 722–738.
Vidas S, Lakemond R, Denman S, Fookes C, Sridharan S, Wark T. A Mask-Based Approach for the Geometric Calibration of Thermal-Infrared Cameras. IEEE Transactions on Instrumentation and Measurement, 2012; 61(6), 1625–1635. doi:10.1109/TIM.2012.2182851.
Electrophysics Corp. Understanding thermal camera image quality, 2013. http://www.electrophysics.com/e/dl-files/ whitepapers_ph/WP-Ph-TIQ-v05.pdf. Accessed on [22.08.2013].
Jones H G, Schofield P. Thermal and other remote sensing of plant stress. General and Applied Plant Physiology, 2008; (34): 19–32.
Snyder W C. BRDF models to predict spectral reflectance and emissivity in the thermal infrared. IEEE Transactions on Geoscience and Remote Sensing, 1998; 36(1): 214–225. doi:10.1109/36.655331.
Grant O M, Chaves M M, Jones H G. Optimizing thermal imaging as a technique for detecting stomatal closure induced by drought stress under greenhouse conditions. Physiologia Plantarum, 2006; 127(3): 507–518. doi:10.1111/j.1399-3054. 2006.00686.x.
Zia S, Spohrer K, Wenyong D, Spreer W, Xiongkui H, Muller J. Effect of Wind and Radiation on the Crop Water Stress Index Derived by Infrared Thermography. In Conference on International Research on Food Security, Natural Resource Management and Rural Development Effect, ETH Zurich. Zurich, September 14 – 16, 2010. pp. 3–6.
Olioso A, Sòria G, Sobrino J, Duchemin B. Evidence of Low Land Surface Thermal Infrared Emissivity in the Presence of Dry Vegetation. IEEE Geoscience and Remote Sensing Letters, 2007; 4(1): 112–116. doi: 10.1109/LGRS. 2006.885857.
Demers M N. Fundamentals of Geographic Information Systems. John Wiley & Sons, 1997. 443 p.
Copyright (c)