Soil-Landscape Estimation and Evaluation Program (SLEEP) to predict spatial distribution of soil attributes for environmental modeling

Feras Mousa Ziadat, Dhanesh Yeganantham, David Shoemate, Raghavan Srinivasan, Balaji Narasimhan, Jaclyn Tech

Abstract


The spatial distribution of surface and subsurface soil attributes is an important input to environmental modeling. Soil attributes represent an important input to the Soil and Water Assessment Tool (SWAT), which influence the accuracy of the modeling outputs. An ArcGIS-based tool was developed to predict soil attributes and provide inputs to SWAT. The essential inputs are digital elevation model and field observations. Legacy soil data/maps can be used to derive observations when recent field surveys are not available. Additional layers, such as satellite images and auxiliary data, improve the prediction accuracy. The model contains a series of steps (menus) to facilitate iterative analysis. The steps are summarized in deriving many terrain attributes to characterize each pixel based on local attributes as well as the characteristics of the contributing area. The model then subdivides the entire watershed into smaller facets (subdivisions of subwatersheds) and classifies these into groups. A linear regression model to predict soil attributes from terrain attributes and auxiliary data are established for each class and implemented to predict soil attributes for each pixel within the class and then merged for the entire watershed or study area. SLEEP (Soil–Landscape Estimation and Evaluation Program) utilizes Pedo-transfer functions to provide the spatial distribution of the necessary unmapped soil data needed for SWAT prediction. An application of the tool demonstrated acceptable accuracy and better spatial distribution of soil attributes compared with two spatial interpolation techniques. The analysis indicated low sensitivity of SWAT prediction to the number of field observations when SLEEP is used to provide the soil layer. This demonstrates the potential of SLEEP to support SWAT modeling where soil data is scarce.
Keywords: GIS, remote sensing, terrain analyses, watershed, SWAT, inverse distance weighted, Kriging
DOI: 10.3965/j.ijabe.20150803.1270 Online first on [2015-03-17]

Citation: Ziadat F M, Dhanesh Y, Shoemate D, Srinivasan R, Narasimhan B, Tech J. Soil-Landscape Estimation and Evaluation Program (SLEEP) to predict spatial distribution of soil attributes for environmental modeling. Int J Agric & Biol Eng, 2015; 8(3): 158-172.

Keywords


GIS, remote sensing, terrain analyses, watershed, SWAT, inverse distance weighted, Kriging

Full Text:

PDF

References


Li J, Heap A D. Spatial interpolation methods applied in the

environmental sciences: A review. Environmental Modelling & Software, 2014; 53: 173–189. doi: 10.1016/ j.envsoft. 2013.12.008.

Mermut A., Eswaran H. Some major developments in soil science since the mid-1960s. Geoderma, 2001; 100: 403–426. doi: 10.1016/S0016-7061(01)00030-1.

Salehi M H, Eghbal M K, Khademi H. Comparison of soil variability in a detailed and a reconnaissance soil map in central Iran. Geoderma, 2003; 111: 45–56. doi: 10.1016/ S0016-7061(02)00252-5.

Moore I D, Gessler P E, Nielsen G A, Peterson G A. Soil Attribute Prediction Using Terrain Analysis. Soil Science Society of America Journal Soil Science Society of America, 1993; 57: 443. doi: 10.2136/sssaj1993.036159950057000 20026x.

Pachepsky Y A, Timlin D J, Rawls W J. Soil Water Retention as Related to Topographic Variables. Soil Science Society of America Journal Soil Science Society: 2001; 65: 1787 doi: 10.2136/sssaj2001.1787.

A. X. Zhu, B Hudson, Burt j, Lubich K, Simonson D. Soil mapping using GIS, expert knowledge, and fuzzy logic. Soil Science society of America Journal. 2001; 65: 1463–1472.

Esfandiarpoor B I, Salehi M H, Toomanian N, Mohammadi J, Poch R M. The effect of survey density on the results of geopedological approach in soil mapping: A case study in the Borujen region, Central Iran. Catena, 2009; 79: 18–26 doi: 10.1016/j.

Cook S E, Corner R J, Grealish G, Gessler P E, Chartres C J. A Rule-based System to Map Soil Properties. Soil Science Society of America Journal Soil Science Society of America, 1996; 60: 1893 doi: 10.2136/sssaj1996.03615995006 000060039x.

McKenzie N J, Gessler P E. Ryan P J, O’Connell D A. The role of terrain analysis in soil mapping, In: Wilson J P, Gallant J C (Eds.) Terrain Analysis: Principles and Applications New York, NY: .John Wiley and Sons, 2000; Chapter 10.

Girgin B N, Frazier B E. Landscape position and surface curvature effects on soils developed in the Palouse area, WA. Pullman, WA: Washington State University, Department of Crop and Soil Sciences. 1996.

Gessler P E. and Chadwick O A. Quantitative soil–landscape modeling: a key to linking ecosystem processes on hillslopes. Pedometrics ’97 International Workshop University of Wisconsin-Madison, Madison, Wisconsin, August 18–20. 1997.

McBratney A, Mendonça S M, Minasny B. On digital soil mapping. Geoderma, 2003; 117: 3–52. doi: 10.1016/ S0016-7061(03)00223-4.

Jiang H T, Xu F F, Cai Y, Yang D Y. Weathering Characteristics of Sloping Fields in the Three Gorges Reservoir Area, China. Pedosphere, 2006; 16: 50–55. doi: 10.1016/S1002-0160(06)60025-8.

Zhang X Y, Sui Y, Zhang X D, Meng K, Herbert S J. Spatial Variability of Nutrient Properties in Black Soil of Northeast China. Pedosphere, 2007; 17: 19–29 doi: 10.1016/ S1002-0160(07)60003-4.

Florinsky I, Eilers R, Manning G, Fuller L. Prediction of soil properties by digital terrain modelling. Environmental Modelling & Software, 2002; 17: 295–311 doi: 10.1016/ S1364-8152(01)00067-6.

Klingseisen Bernhard, Metternicht Graciela, Paulus Gernot. Geomorphometric landscape analysis using a semi-automated GIS-approach. Environmental Modelling & Software, 2008; 23: 109–121 doi: 10.1016/j.envsoft.2007.05.007.

Gessler P E, Moore I D, Mckenzie N J, Ryan P J. Soil-landscape modelling and spatial prediction of soil attributes. International Journal of Geographical Information Systems Taylor & Francis Group, 2007.

Kuriakose S L, Devkota S, Rossiter D G, Jetten V G. Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. Catena, 2009; 79: 27–38 doi: 10.1016/ j.catena. 2009.05.005.

Gessler P E, Chadwick O A, Chamran F, Althouse L, Holmes K. Modeling Soil–Landscape and Ecosystem Properties Using Terrain Attributes. Soil Science Society of America Journal Soil Science Society, 2000; 64: 2046 doi: 10.2136/ sssaj2000. 6462046x.

Goodman A. Trend surface analysis in the comparison of spatial distributions of hillslope parameters. Ph. D. Dissertation. Deakin University, 1999.

Browning D M, Duniway M C. Digital soil mapping in the absence of field training data: A case study using terrain attributes and semi automated soil signature derivation to distinguish ecological potential. Applied and Environmental Soil Science, 2011.

Mishra U. Predicting storage and dynamics of soil organic carbon at a regional scale. PhD Dissertation, Ohio State University, 2009.

Marchetti A, Piccini C, Santucci S, Chiuchiarelli I, Francaviglia R. Simulation of soil types in Teramo province (Central Italy) with terrain parameters and remote sensing data. Catena, 2011; 85: 267–273 doi: 10.1016/ j.catena.2011.01.012.

Mulder V L, de Bruin S, Schaepman M E, Mayr T R. The use of remote sensing in soil and terrain mapping — A review. Geoderma, 2011; 162: 1–19. doi: 10.1016/ j.geoderma.2010. 12.018.

Arnold J G, Fohrer N. SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes, 2005; 19: 563–572 doi: 10.1002/ hyp.5611.

Williams J R, Arnold J G, Kiniry J R, Gassman P W, Green C H. History of model development at Temple, Texas. Hydrological Sciences Journal Taylor & Francis Ltd, 4 Park Square, Milton Park, Abingdon Ox14 4rn, Oxon, England: 2008; 53: 948–960 doi: 10.1623/hysj.53.5.948.

Arnold J G, Srinivasan R, Muttiah R S, Williams J R. Large Area Hydrologic Modeling And Assessment Part I: Model Development. Journal of the American Water Resources Association, 1998; 34: 73–89 doi: 10.1111/j. 1752-1688. 1998.tb05961.x.

Neitsch S L, Arnold J G, Kiniry J R, Williams J R. Soil & Water Assessment Tool Theoretical Documentation Version 2009; 2011.

Geza M, McCray J E. Effects of soil data resolution on SWAT model stream flow and water quality predictions. Journal of Environmental Management, 2008; 88: 393–406 doi: 10.1016/j.jenvman.2007.03.016.

Boluwade A, Madramootoo C. Modeling the Impacts of Spatial Heterogeneity in the Castor Watershed on Runoff, Sediment, and Phosphorus Loss Using SWAT: I. Impacts of Spatial Variability of Soil Properties. Water, air, and soil pollution, 2013; 224, 1692 doi: 10.1007/s11270-013-1692-0.

Bossa A Y, Diekkrüger B, Igué A M, Gaiser T. Analyzing the effects of different soil databases on modeling of hydrological processes and sediment yield in Benin (West Africa). Geoderma, 2012; 173–174 doi:10.1016/ j.geoderma.2012. 01.012.

Moriasi D N, Starks P J. Effects of the resolution of soil dataset and precipitation dataset on SWAT2005 streamflow calibration parameters and simulation accuracy. Journal of Soil and Water Conservation, 2010; 65: 63–78 doi: 10.2489/ jswc.65.2.63.

Li R, Zhu A X, Song X, Li B, Pei T, Qin C. Effects of spatial aggregation of soil spatial information on watershed hydrological modelling. Hydrological Processes, 2012; 26: 1390–1404 doi: 10.1002/hyp.8277.

USDA-NRCS. U.S. General Soil Map (STATSGO2). U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA. 2009.

USDA-NRCS. Soil Survey Geographic (SSURGO) Database. U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA. 2009.

Wang X, Melesse A M. Effects of statsgo and ssurgo as inputs on swat model’s snowmelt simulation1. Journal of the American Water Resources Association, 2007; 42:

–1236 doi: 10.1111/j.1752-1688.2006.tb05296.x.

Mukundan R, Radcliffe D E, Risse L M. Spatial resolution of soil data and channel erosion effects on SWAT model predictions of flow and sediment. Journal of Soil and Water Conservation, 2010; 65: 92–104 doi: 10.2489/jswc.65.2.92.

Mednick A C. Does soil data resolution matter? State Soil Geographic database versus Soil Survey Geographic database in rainfall-runoff modeling across Wisconsin. Journal of Soil and Water Conservation Soil Water Conservation Soc, 945 Sw Ankeny Rd, Ankeny, Ia 50023-9723 USA: 2010; 65: 190–199 doi: 10.2489/jswc.65.3.190.

Romanowicz A A, Vanclooster M, Rounsevell M, La Junesse I. Sensitivity of the SWAT model to the soil and land use data parametrisation: a case study in the Thyle catchment, Belgium. Ecological Modelling, 2005; 187: 27–39 doi: 10.1016/j. ecolmodel.2005.01.025.

Thorp K R, Bronson K F. A model-independent open-source geospatial tool for managing point-based environmental model simulations at multiple spatial locations. Environmental Modelling & Software, 2013; 50: 25–36 doi: 10.1016/j. envsoft.2013.09.002.

Microsoft Office Excel 2010". https://products.office. com/en-us/excel

ArcGIS 10.1 Simplifies Sharing of Geographic Information: New Tools and Infrastructure Extend the Reach of GIS throughout Organizations" (Press release). Esri. 2012-06-11. Archived from the original on 2012-06-15.

Ziadat, F., Shoemate, D., Dhanesh, Y., Srinivasan R, Tech, J. User’s Guide for SLEEP (Soil-Landscape Estimation and Evaluation Program) for ArcGIS 10.1. Spatial Sciences Laboratory, Texas A&M University, College Station, USA.

Ziadat F M. Land suitability classification using different sources of information: Soil maps and predicted soil attributes in Jordan. Geoderma, 2007; 140: 73–80 doi: 10.1016/j. geoderma.2007.03.004.

Ziadat F M. Analyzing Digital Terrain Attributes to Predict Soil Attributes for a Relatively Large Area. Soil Science Society of America Journal SOIL SCI SOC AMER, 677 South Segoe Road, Madison, WI 53711 USA: 2005; 69: 1590 doi: 10.2136/sssaj2003.0264.

Nurhussen M S, Yitaferu B, Kibret K, Ziadat F M. Soil-Landscape Modeling and Remote Sensing to Provide Spatial Representation of Soil Attributes for an Ethiopian Watershed. Applied and Environmental Soil Science, 2013; Article ID 798094.

Ziadat F M. Prediction of Soil Depth from Digital Terrain Data by Integrating Statistical and Visual Approaches. Pedosphere, 2010; 20: 361–367 doi: 10.1016/S1002- 0160(10)60025-2.

Kunkel M L, Flores A N, Smith T J, McNamara J P, Benner S G. A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma, 2011; 165: 1–11 doi: 10.1016/j.geoderma.2011.06.011.

Sumfleth K, Duttmann R. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators. Ecological Indicators Elsevier Science Bv, Po Box 211, 1000 Ae Amsterdam, Netherlands: 2008; 8: 485–501 doi: 10.1016/j.ecolind.2007. 05.005.

Van de W J, Baert G, Moeyersons J, Nyssen J, De Geyndt K, Taha N. Soil–landscape relationships in the basalt-dominated highlands of Tigray, Ethiopia. Catena, 2008; 75: 117–127 doi: 10.1016/j.catena.2008.04.006.

Selige T, Böhner J, Schmidhalter Urs. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma, 2006; 136: 235–244 doi: 10.1016/j.geoderma.2006.03.050.

Saxton K E, Rawls W J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal Soil Sci Soc Amer, 677 South Segoe Road, Madison, WI 53711 USA: 2006; 70: 1569 doi: 10.2136/sssaj2005.0117.

Jarvis A, Reuter H I, Nelson A, Guevara E. Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database. 2008.

NASA Land Processes Distributed Active Archive Center (LP DAAC) as producer), Land Cover Type Yearly L3 Global 0.05Deg CMG, 2011.

Environmental Modeling Center/National Centers for Environmental Prediction/National Weather Service/ NOAA/U.S. Department of Commerce, NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, January 1979 to December 2010.

FAO/IIASA/ISRIC/ISSCAS/JRC. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria. 2012.




Copyright (c)



2023-2026 Copyright IJABE Editing and Publishing Office