Local attribute-similarity weighting regression algorithm for interpolating soil property valuesLocal attribute-similarity weighting regression algorithm for interpolating soil property values
Abstract
Keywords: attribute similarity, geographically weighted regression, local regression, spatial interpolation
DOI: 10.25165/j.ijabe.20171005.2209
Citation: Zhou J G, Dong D M, Li Y Y. Local attribute-similarity weighting regression algorithm for interpolating soil property values. Int J Agric & Biol Eng, 2017; 10(5): 95–103.
Keywords
Full Text:
PDFReferences
Goovaerts P. Geostatistics in soil science: state of the art and perspectives. Geoderma, 1999; 89: 1–45.
McBratney A B, Odeh I O A, Bishop T F A, Dunbara M S, Shatar T M. An overview of pedometric techniques for use in soil survey. Geoderma, 2000; 97(3-4): 293–327.
Bostan P A, Heuvelink G B M. Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int. J. Appl. Earth Obs. Geoinf, 2012; 19: 115–126.
Ester M. Spatial data mining: databases primitives, algorithms and efficient DBMS support. Data Mining and Knowledge Discovery, 2000; 4: 193–216.
Han J, Kamber M. Data mining: concepts and techniques, Academic Press, San Francisco, 2001.
Fotheringham A S, Charlton M E. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environ. Plann. A, 1998; 30: 1905–1927.
Hengl T, Heuvelink G B M, Rossiter D. About regression-kriging: From equation to case studies. Comput. Geosci, 2007; 33: 1301–1315.
Sun W, Minasny B, McBratney A B. Analysis and prediction of soil properties using local regression-Kriging.
Geoderma, 2012; 171-172: 16–23.
Sun W, Whelan B M, Minasny B, McBratney A B. Evaluation of a local regression Kriging approach for mapping apparent electrical conductivity of soil (ECa) at high resolution. Journal of Plant Nutrition and Soil Science, 2012; 175(2): 212–220.
Kumar S, Lal R, Liu D S. A geographically weighted regression Kriging approach for mapping soil organic carbon stock. Geoderma, 2012; 189-190: 627–634.
Zhou J G, Guan J H, Bian F L, Li P X. DCAD: a dual clustering algorithm for distributed spatial databases. Geo-spatial Information Science, 2007; 10(2): 137–144.
Lin C R, Liu K H. Dual clustering: integrating data clustering over optimization and constraint domains. IEEE Trans. Knowl. Data Eng, 2005: 17(5): 628–637.
Jiao L M, Liu Y L, Zou B. Self-organizing dual clustering considering spatial analysis and hybrid distance measures. Sci. China Ser. D, 2011; 54(8): 1268–1278.
Hastie T, Tibshiani R. The elements of statistical leaning: Data mining, inference and prediction, second ed. Springer, New York, 2009.
Harris P, FotheringhamA S, CrespoP, Charlton M. The use of geographically weighted regression for spatial prediction: an evaluation of models using simulated data sets. Mathematical Geosciences, 2010; 42(6): 657–668.
Copyright (c)