Modelling of microwave assisted hot-air drying and microstructural study of oilseeds
Abstract
Keywords: mathematical modelling, oilseeds, MW assisted drying, drying rate, SEM images
DOI: 10.3965/j.ijabe.20160906.2442
Citation: Hemis M, Choudhary R, Becerra-Mora N, Kohli P, Raghavan V. Modelling of microwave assisted hot-air drying and microstructural study of oilseeds. Int J Agric & Biol Eng, 2016; 9(6): 167-177.
Keywords
Full Text:
PDFReferences
United States Department of Agriculture (USDA). Oilseeds: world markets and trade. 2015 (report December, 2015). Available:http://www.fas.usda.gov/data/oilseeds-world-markets-and-trade. Accessed on [2016]
Berrios J, Wood D F, Whitehand L W, Pan J. Sodium bicarbonate and the microstructure, expansion and color of extruded black beans. J Food Processing and Preservation, 2004; 28: 321–335.
Bdour Mohammed A, Al-Rabadi Ghaid J, Al-Ameiri Nofal S,
Mahadeen Atif Y, Aaludatt Muhammad H. Microscopic analysis of extruded and pelleted barley and sorghum grains. Jordan Journal of Biological Sciences, 2014; 7(3): 227–231.
Gazor H R, Mohsenimanesh A. Modelling the drying kinetics of canola in fluidised bed dryer. Czech Journal of Food Sciences, 2010; 6(6): 531–537.
Vicas S M, Palade P A. The drying processes of corn seeds in a microwave field. Analele Universităńii Din Oradea Fascicula: Ecotoxicologie, Zootehnie Si Tehnologii De Industrie Alimentară, 2010; 1278–1286.
Ranjbaran M, Zare D. A new Approach for modelling of hot air-microwave thin layer drying of soybean. Electronic Journal of Polish Agricultural Universities, 2012; 15(3): #01.
Association of Official Analytical Chemists (AOAC). Official methods of analysis. Washington, D.C.: AOAC. 2000.
Costa L M, Resende O, Sousa K A, Gonçalves D N. Effective diffusion coefficient and mathematical modelling of the drying of crambe seeds. Rev. Bras. Engenharia Agríc. Ambiental, 2011; 15(10): 1089–1096.
Gely M C, Giner S A. Diffusion coefficient relationships during drying of soya bean cultivars. Biosystems Engineering, 2007; 96(2): 213–222.
Hemis M, Choudhary R, Watson G D. A coupled mathematical model for simultaneous microwave and convective drying of wheat seeds. Biosystems engineering, 2012; 112(3): 202–209.
Hemis M, Raghavan G S V. Effect of convective air attributes with microwave drying of soybean: model prediction and experimental validation. Drying Technology 2014; 32(5): 543–549(7).
Hemis M, Choudhary R, Gariépy Y, Raghavan V G S. Experiments and modelling of the microwave assisted convective drying of canola seeds. Biosystems Engineering, 2015; 139(4): 121–127.
Chen A A, Singh R K, Haghighi K, Nelson P E. Finite element analysis of temperature distribution in microwave cylindrical potato tissue. Journal of Food Engineering, 1993; 18(4): 351–368.
Swami S. Microwave heating characteristics of simulated high moisture foods. M.Sc. thesis. Amherst, MA.: University of Massachusetts, 1982.
Nelson S O, Kraszewski A W, Trabelsi S, Lawrence K C. Using cereal grain permittivity for sensing moisture content. IEEE Transactions on Instrumentation and Measurement, 2000; 49(3): 470–475.
Nelson S O, Trabelsi S. Sensing grain and seed moisture and density from dielectric properties. Int J Agric & Biol Eng, 2011; 4(1): 1–7.
Salek J, Villota R. A comparative study of whirling and
conventional fluidized beds in their application to dehydration. I. Heat and mass transfer analysis. Journal of Food Processing and Preservation, 1984; 8(2): 73–98.
Aregba A W, Nadeau J P. Comparison of two non-equilibrium models for static grain deep bed drying by numerical simulation. Journal of Food Engineering 2007; 78(4): 1174–1187.
Muhlbauer W, Scherer R. The specific heat of cereals (in German). Grundlagen der Landtechnik, 1977; 27: 33–40.
ASAE D243.4 MAY 2003 (R2008). Thermal Properties of Grain and Grain Products. ASABE STANDARDS, 2008.
Uma Shanker Shivhare. Drying characteristics of corn in a microwave field with a surface-wave applicator. PhD dissertation. Macdonald campus McGill University, 1991. Site web: http://digitool.library.mcgill.ca/R?func=dbin-jump- full&object_id=70344
Chang C S. Measuring density and porosity of grain kernels using a gas pycnometer. Cereal Chemistry Journal, 1988; 65(1): 13–15.
Verboven P, Herremans E, Borisjuk L, Helfen L, Ho Q T, Tschiersch H, et al. Void space inside the developing seed of Brassica napus and the modelling of its function. New
Phytologist, 2013; 199(4): 936–947.
Yu D U, Shrestha B L, Baik O D. Thermal conductivity, specific heat, thermal diffusivity and emissivity of stored canola seeds with their temperature and moisture content. Journal of Food Engineering, 2015; 165: 156–165.
Campana L A, Sempe M E, Filgueira R R. Effect of microwave energy on drying wheat. Cereal Chemistry, 1986; 63(3): 271–273.
Stroshine R, Hamann D. Physical properties of agricultural materials and food products. West Lafayette, IN: Purdue University, 1993.
Deshpande S D, Bal S, Ojha T P. Bulk thermal conductivity and diffusivity of soybean. Journal of Food Processing and Preservation, 1996; 20(3):177–189.
Kazarian E A, Hall C W. The thermal properties of grain. Transactions of the ASAE, 1965; 8(1): 33–37.
Yu D U, Shrestha B L, Baik O D. Radio frequency dielectric properties of bulk canola seeds under different temperatures, moisture contents, and frequencies for feasibility of radio frequency disinfestation. International Journal of Food Properties, 2015; 18(12): 2746–2763.
Copyright (c)