Digital surface model applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or abiotic effects on grapevine canopies
Abstract
Keywords: remote sensing, canopy cover, viticultural management, frost damage, digital surface model
DOI: 10.3965/j.ijabe.20160906.2908
Citation: Su B F, Xue J R, Xie C Y, Fang Y L, Song Y Y, Fuentes S. Digital surface model applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or abiotic effects on grapevine canopies. Int J Agric & Biol Eng, 2016; 9(6): 119-130.
Keywords
Full Text:
PDFReferences
Cramer G R, Ergül A, Grimplet J, Tillett R L, Tattersall E A R, Bohlman M C, et al. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 2007; 7(2): 111–134.
Cramer G R, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 2011; 11(1): 1–14.
Fuentes S, Poblete-Echeverría C, Ortega-Farias S, Tyerman S, De Bei R. Automated estimation of leaf area index from grapevine canopies using cover photography, video and computational analysis methods. Australian Journal of Grape and Wine Research, 2014; 20(3): 465–473.
Liu Z, Huang R, Hu Y, Fan S,Feng P. Generating high spatiotemporal resolution LAI based on MODIS/GF-1 data and combined Kriging-Cressman interpolation. International Journal of Agricultural and Biological Engineering, 2016; 9(5): 120–131.
Hadjimitsis D G, Papadavid G, Agapiou A, Themistocleous K, Hadjimitsis M G, Retalis A, et al. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Natural Hazards and Earth System Sciences, 2010; 10(1): 89–95.
Johnson L F, Roczen D E, Youkhana S K, Nemani R R,Bosch D F. Mapping vineyard leaf area with multispectral satellite imagery. Computers & Electronics in Agriculture, 2003; 38(1): 33–44.
Baluja J, Diago M P, Balda P, Zorer R, Meggio F, Morales F, et al. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrigation Science, 2012; 30(6): 511–522.
Li D. Open access publishing of scientific scholarly journals in China. Master dissertation. Beijing: China Agriculture University, 2005; 42p. (in Chinese with English abstract).
Xia T, Kustas W P, Anderson M C, Alfieri J G, Gao F, McKee L, et al. Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one-and two-source modeling schemes. Hydrology and Earth System Sciences, 2016; 20(4): 1523–1545.
Hoffmann H, Nieto H, Jensen R, Guzinski R, Zarco-Tejada P,Friborg T. Estimating evapotranspiration with thermal UAV data and two source energy balance models. Hydrology and Earth System Sciences Discussions, 2015; 12: 7469–7502.
Ortega-Farías S, Ortega-Salazar S, Poblete T, Kilic A, Allen R, Poblete-Echeverría C, et al. Estimation of energy balance components over a drip-irrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based unmanned aerial vehicle (UAV). Remote Sensing, 2016; 8(8): 638.
Carrasco-Benavides M, Ortega-Farías S, Lagos L O, Kleissl J, Morales L, Poblete-Echeverría C, et al. Crop coefficients and actual evapotranspiration of a drip-irrigated Merlot vineyard using multispectral satellite images. Irrigation Science, 2012; 30(6): 485–497.
Hall A, Louis J, Lamb D. Characterising and mapping vineyard canopy using high-spatial-resolution aerial multispectral images. Computers & Geosciences, 2003; 29(7): 813–822.
Mathews A J, Jensen J L R. Visualizing and quantifying vineyard canopy LAI using an unmanned aerial vehicle (UAV) vollected high density structure from motion point cloud. Remote Sensing, 2013; 5(5): 2164–2183.
Ballesteros R, Ortega J F, Hernández D, Moreno M Á. Characterization of vitis vinifera L. canopy using unmanned aerial vehicle-based remote sensing and photogrammetry techniques. American Journal of Enology & Viticulture, 2015; 66(2): 120–129.
Hall A, Lamb D W, Holzapfel B, Louis J. Optical remote sensing applications in viticulture—a review. Australian Journal of Grape & Wine Research, 2002; 8(1): 36–47.
Powell K S. A holistic approach to future management of grapevine phylloxera, in Arthropod Management in Vineyards: Pests, Approaches, and Future Directions. Bostanian N J, Vincent C, Isaacs R, Ed. 2012; Springer Netherlands: Dordrecht. 219–251.
Honkavaara E, Saari H, Kaivosoja J, Pölönen I, Hakala T, Litkey P, et al. Processing and assessment of spectrometric, stereoscopic smagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sensing, 2013; 5(10): 5006–5039.
Primicerio J, Gennaro S F D, Fiorillo E, Genesio L, Lugato E, Matese A, et al. A flexible unmanned aerial vehicle for precision agriculture. Precision Agriculture, 2012; 13(4): 517–523.
Gago J, Douthe C, Coopman R, Gallego P, Ribas-Carbo M, Flexas J, et al. UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, 2015; 153(1): 9–19.
Li Z, Chen Z, Wang L, Liu J, Zhong Q. Area extraction of maize loading based on remote sensing by small unmanned aerial vehicle. Transaction of the Chinese Society of Agricultural Engineering, 2014; 30(19): 207–213. (in Chinese with English abstract).
Lucieer A, Jong S M D, Turner D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 2014; 38(1): 97–116.
Turner D, Lucieer A, Watson C S. Development of an Unmanned Aerial Vehicle (UAV) for hyper-resolution vineyard mapping based on visible, multispectral and thermal imagery. In International Symposium on Remote Sensing of Environment, 2011.
Burgos S, Mota M, Noll D, Cannelle B. Use of very high-resolution airborne images to analyse 3D canopy architecture of a vineyard. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015; 40(3): 399–403.
Zhang Y, Zhuang Z, Xiao Y, He Y. Rape plant NDVI 3D distribution based on structure from motion. Transaction of the Chinese Society of Agricultural Engineering, 2015; 31(17): 207–214. (in Chinese with English abstract).
Bendig J, Bolten A, Bennertz S, Broscheit J, Eichfuss S, Bareth G. Estimating biomass of barley using Crop Surface Models (CSMs) derived from UAV-based RGB imaging. Remote Sensing, 2014; 6(3): 10395–10412.
Fuentes S, Palmer A R, Taylor D, Zeppel M, Whitley R, Eamus D. An automated procedure for estimating the Leaf Area Index (LAI) of woodland ecosystems using digital imagery, MATLAB programming and its application to an examination of the relationship between remotely sensed and field measurements of LAI. Functional Plant Biology, 2008; 35(10): 1070–1079.
Poblete-Echeverría C, Fuentes S, Ortega-Farias S, Gonzalez-Talice J, Yuri J A. Digital cover photography for estimating Leaf Area Index (LAI) in apple trees using a variable light extinction coefficient. Sensors, 2015; 15(2): 2860–2872.
Mora M, Avila F, Carrasco-Benavides M, Maldonado G, Olguín-Cáceres J, Fuentes S. Automated computation of leaf area index from fruit trees using improved image processing algorithms applied to canopy cover digital photograpies. Computers & Electronics in Agriculture, 2016; 123: 195–202.
Bei R D, Fuentes S, Gilliham M, Tyerman S, Edwards E, Bianchini N, et al. VitiCanopy: A free computer App to estimate canopy vigor and porosity for grapevine. Sensors, 2016; 16(4): 585.
McCarthy M G, Loveys B R, Dry P R, Stoll M. Regulated deficit irrigation and partial rootzone drying as irrigation management techniques for grapevines. Deficit irrigation practices, FAO Water Reports, 2002; 22: 79–87.
Chaves M M, Santos T P, Souza C R d, Ortuño M F, Rodrigues M L, Lopes C M, et al. Deficit irrigation in grapevine improves water―use efficiency while controlling vigour and production quality. Annals of Applied Biology, 2007; 150(2): 237–252.
Chaves M M, Zarrouk O, Francisco R, Costa J M, Santos T, Regalado A P, et al. Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 2010; 105(5): 661–676.
Xu Z, Wu L, Liu J, Shen Y, Li F, Wang R. Modification of SFM algorithm referring to image topology and its application in 3-Dimension reconstruction of disaster area. Geomatics and Information Science of Wuhan University, 2015; 40(5): 599–606. (in Chinese with English abstract).
Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004; 60(60): 91–110.
Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010; 32(8): 1362–76.
Triggs B, Mclauchlan P F, Hartley R I, Fitzgibbon A W. Bundle Adjustment—A modern synthesis. in International Workshop on Vision Algorithms: Theory and Practice, 1999.
Jiao L C, Tan S. Development and prospect of image multiscale geometric analysis. Acta Electronica Sinica, 2003; 31(Z1): 1975–1981. (in Chinese with English abstract).
Huang Y B, Thomson S J, Brand H J, Reddy K N. Development and evaluation of low-altitude remote sensing systems for crop production management. Int J Agric & Biol Eng, 2016; 9(4): 1–11.
Zia S, Spohrer K, Merkt N, Du W Y, He X K, Müller J. Non-invasive water status detection in grapevine (Vitis vinifera L.) by thermography. Int J Agric & Biol Eng, 2009; 2(4): 46–54.
Fuentes S, Bei R D, Pech J, Tyerman S. Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrigation Science, 2012; 30(6): 523–536.
Zia S, Du W, Spreer W, Spohrer K, He X, Muller J. Assessing crop water stress of winter wheat by thermography under different irrigation regimes in North China Plain. Int
J Agric & Biol Eng , 2012; 5(3): 24–34.
Poblete-Echeverría C, Sepulveda-Reyes D, Ortega-Farias S, Zuñiga M, Fuentes S. Plant water stress detection based on aerial and terrestrial infrared thermography: a study case from vineyard and olive orchard. Acta Horticulturae, 2016(1112): 141–146.
Poblete-Echeverría C, Sepulveda-Reyes D, Ortega-Farias S, Zuñiga M, Fuentes S. Plant water stress detection based on aerial and terrestrial infrared thermography: a study case from vineyard and olive orchard. in XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): 1112. 2014.
CASA. Civil Aviation Safety Authority, Australia. https://www.casa.gov.au/aircraft/landing-page/flying-drones-australia. Accessed on [2016-10-16].
Poni S, Bernizzoni F, Civardi S. The effect of early leaf removal on whole-canopy gas exchange and vine performance of Vitis vinifera L. ‘Sangiovese’. VITIS-Journal of Grapevine Research, 2015; 47(1): 1.
Medrano H, Tomás M, Martorell S, Escalona J-M, Pou A, Fuentes S, et al. Improving water use efficiency of vineyards in semi-arid regions. A review. Agronomy for Sustainable Development, 2015; 35(2): 499–517.
Copyright (c)