Effects of salt ions on rheological properties of SPI-GG hybrid system
Abstract
Keywords: guar gum, salt ions, soy protein isolate, rheological property, frequency dependence, food additive
DOI: 10.25165/j.ijabe.20171005.3245
Citation: Bi C H, Zhang Y L, Wu M, Ni Z J, Li G, Liu Y, et al. Effects of salt ions on rheological properties of SPI-GG hybrid system. Int J Agric & Biol Eng, 2017; 10(5): 234–241.
Keywords
Full Text:
PDFReferences
Huysveld S, de Meester S, Peiren N, Muylle H, Lauwers L, Dewulf J. Resource use assessment of an agricultural system from a life cycle perspective - a dairy farm as case study. Agricultural Systems, 2015; 135: 77–89.
Aguirre F J S, Milesi V, Añón M C. Effect of extraction and precipitation conditions during soybean protein isolate production on the genistein series content. Journal of the American Oil Chemists Society, 2007; 84(3): 305–314.
Petruccelli S, Anon M C. Soy protein isolate components and their interactions. Journal of Agricultural & Food Chemistry, 1995; 43(7): 1762–1767.
Bi C H, Li D, Wang L J, Adhikari B. Viscoelastic properties and fractal analysis of acid-induced SPI gels at different ionic strength. Carbohydrate Polymers, 2013; 92(1): 98–105.
Maltais A, Remondetto G E, Gonzalez R, Subirade M. Formation of soy protein isolate cold-set gels: protein and salt effects. Journal of Food Science, 2010; 70(1): C67–C73.
Bi C H, Li D, Wang L J, Adhikari B. Effect of LBG on the gel properties of acid-induced SPI gels. LWT - Food Science and Technology, 2017; 75: 1–8.
Corredig M, Sharafbafi N, Kristo E. Polysaccharide-protein interactions in dairy matrices, control and design of structures. Food Hydrocolloids, 2011; 25(8): 1833–1841.
Perez A A, Carrara C R, Sánchez C C, Patino J M R, Santiago L G. Interactions between milk whey protein and polysaccharide in solution. Food Chemistry, 2009; 116(1): 104–113.
Alvarez M D, Fernández C, Olivares M D, Canet W. A rheological characterisation of mashed potatoes enriched with soy protein isolate. Food Chemistry, 2012; 133(4): 1274–1282.
Dea I C M, Morrison A. Chemistry and interactions of seed galactomannans. Advances in Carbohydrate Chemistry & Biochemistry, 1975; 31(8): 241–312.
Dey P M. Biochemistry of α-D-Galactosidic Linkages in the Plant Kingdom. Advances in Carbohydrate Chemistry & Biochemistry, 1980; 37: 283–372.
Dierckx I S, Dewettinck I K. Seed Gums. Biopolymers Online. Wiley-VCH Verlag GmbH & Co. KGaA, 2005; 321–343.
Todd P A, Benfield P, Goa K L. Guar gum. Drugs, 1990; 39(6): 917–928.
Santos R, Gomes D, Macedo H, Barros D, Tibério C, Veiga, A S, et al. Guar gum as a new antimicrobial peptide delivery system against diabetic foot ulcers Staphylococcus aureus isolates. Journal of Medical Microbiology, 2016; 65(10): 1092–1099.
Barth H G, Smith D A. High-performance size-exclusion chromatography of guar gum. Journal of Chromatography A, 1981; 206(2): 410–415.
Vijayendran B R, Bone T. Absolute molecular weight and molecular weight distribution of guar by size exclusion chromatography and low-angle laser light scattering. Carbohydrate Polymers, 1984; 4(4): 299–313.
Chudzikowski R J. Guar gum and its application. J Soc Cosmet Chem, 1971; 22(1): 43.
Wang Q, Ellis P R, Ross-Murphy S B. The stability of guar gum in an aqueous system under acidic conditions. Food Hydrocolloids, 2000; 14(2): 129–134.
Foegeding E A. Rheological properties of whey protein isolate gels determined by torsional fracture and stress relaxation. Journal of Texture Studies, 2010; 23(3): 337–348.
Bi C H, Li D, Wang L J, Wang Y, Adhikari B. Characterization of non-linear rheological behaviour of SPI–FG dispersions using LAOS tests and FT rheology. Carbohydrate Polymers, 2013; 92(2): 1151–1158.
Papagiannopoulos A, Sotiropoulos K, Stergios P. Particle tracking microrheology of the power-law viscoelasticity of xanthan solutions. Food Hydrocolloids, 2016; 61: 201–210.
Oh M, So J, Yang S. Rheological evidence for the silica-mediated gelation of xanthan gum. Journal of Colloid and Interface Science, 1999; 216(2): 320–328.
Copyright (c)