Potential and limitations of satellite laser altimetry for monitoring water surface dynamics: ICESat for US lakes
Abstract
Keywords: ICESat, lidar, water resources, lake dynamics, water level, satellite laser altimetry, lake surfaces, repeat cycle
DOI: 10.25165/j.ijabe.20171005.3426
Citation: Liu S, Jiang Q G, Zhang X S, Zhao K G. Potential and limitations of satellite laser altimetry for monitoring water surface dynamics: ICESat for US lakes. Int J Agric & Biol Eng, 2017; 10(5): 154–165.
Keywords
Full Text:
PDFReferences
Pan F, Liao J, Li X, Guo H. Application of the inundation area—lake level rating curves constructed from the SRTM DEM to retrieving lake levels from satellite measured inundation areas. Computers and Geosciences, 2013; 52: 168–176.
Hansen M C, Potapov P V, Moore R, Hancher M, Turubanova S A, Tyukavina A, et al. High-resolution global maps of 21st-century forest cover change. Science, 2013; 342(6160): 850–853.
Mercier F, Cazenave A, Maheu C. Interannual lake level fluctuations (1993–1999) in Africa from Topex/Poseidon: connections with ocean–atmosphere interactions over the Indian Ocean. Global and Planetary Change, 2002; 32: 23.
Guo M, Wu W, Zhou X, Chen Y, Li J. Investigation of the dramatic changes in lake level of the Bosten Lake in northwestern China. Theoretical and Applied Climatology, 2014; 119(1-2): 341–351.
Wu Y, Zhu L. The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970–2000. Journal of Geographical Sciences, 2008; 18(2): 177–89.
Song C Q, Huang B, Ke L H, Richards K S. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. Journal of Hydrology, 2014; 514: 131–144.
Ponchaut F, Cazenave A. Continental lake level variations from Topex/Poseidon (1993–1996). Comptes Rendus de l Académie des Sciences - Series IIA - Earth and Planetary Science, 1998; 326(1): 13–20.
Wang X W, Gong P, Zhao Y Y, Xu Y, Cheng X, Niu Z G, et al. Water-level changes in China's large lakes determined from ICESat/GLAS data. Remote Sensing of Environment, 2013; 132: 131–144.
Phan V H, Lindenbergh R, Menenti M. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. International Journal of Applied Earth Observation and Geoinformation, 2012; 17: 12–22.
Jarihani A J, Callow J N, Johansen K, Gouweleeuw B. Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods. Journal of Hydrology, 2013; 505: 78–90.
Song C, Huang B, Ke L, Richards K S. Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2014; 92: 26–37.
Zhang G, Xie H, Kang S, Yi D, Ackley S F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sensing of Environment, 2011; 115(7): 1733–1742.
Muala E, Mohamed Y, Duan Z, van der Zaag P. Estimation of reservoir discharges from Lake Nasser and Roseires Reservoir in the Nile Basin using satellite altimetry and imagery data. Remote Sensing, 2014; 6(8): 7522–45.
Kleinherenbrink M, Lindenbergh R C, Ditmar P G. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. Journal of Hydrology, 2015; 521: 119–131.
Santos da Silva J, Calmant S, Seyler F, Rotunno Filho O C, Cochonneau G, Mansur W J. Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sensing of Environment, 2010; 114(10): 2160–2181.
Zhao K, Popescu S, Nelson R. Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers. Remote Sensing of Environment, 2009; 113(1): 182–196.
Herzfeld U C, Wallin B. Spatio-temporal analysis of surface elevation changes in Pine Island Glacier, Antarctica, from ICESat GLAS data and ERS-1 radar altimeter data. Annals of Glaciology, 2014; 55(66): 248–258.
Betbeder J, Gond V, Frappart F, Baghdadi N, Briant G, Bartholomes E. Mapping of central Africa forested wetlands using remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014; 7(2): 531–542.
Tang H, Brolly M, Zhao F, Dubayaha R. Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in Sierra National Forest, CA. Remote Sensing of Environment, 2014; 143(3): 131–141.
Luthcke S B, Rowlands D D, Williams T A, Sirot M. Reduction of ICESat systematic geolocation errors and the impact on ice sheet elevation change detection. Geophysical Research Letters, 2005; 32(21). DOI: 10.1029/2005GL023689.
García M, Popescu S, Riaño D, Zhao K, Neuenschwander A, Agca M, et al. Characterization of canopy fuels using ICESat/GLAS data. Remote Sensing of Environment, 2012; 123(1): 81–89.
Zwally HJ, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, et al. ICESat's laser measurements of polar ice, atmosphere, ocean, and land. Journal of Geodynamics, 2002; 34(3-4): 405–445.
Abshire J B, Sun X L, Riris H, Sirota J M, McGarry J F, Palm S, et al. Geoscience laser altimeter system (GLAS) on the ICESat mission: On-orbit measurement performance. Geophysical Research Letters, 2005; 32(21): 4p.
Alsdorf D, Birkett C, Dunne T, Melack J, Hess L. Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry. Geophysical Research Letters, 2001; 28(14): 2671–4.
Chipman J W, Lillesand T M. Satellite-based assessment of the dynamics of new lakes in southern Egypt. International Journal of Remote Sensing, 2007; 28(19): 4365–79.
Baghdadi N, Lemarquand N, Abdallah H, Bailly J S. The relevance of GLAS/ICESat elevation data for the monitoring of river networks. Remote Sensing, 2011; 3(12): 708–720.
Hall A C, Schumann G J P, Bamber J L, Bates P D, Trigg M A. Geodetic corrections to Amazon River water level gauges using ICESat altimetry. Water Resources Research, 2012; 48(6). DOI: 10.1029/2011WR010895.
van Dijk A I J M, Peña-Arancibia J L, Wood E F, Sheffield J, Beck H E. Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide. Water Resources Research, 2013; 49(5): 2728–2746.
Wu H, Wang N, Jiang X, Guo Z. Variations in water level and glacier mass balance in Nam Co lake, Nyainqentanglha range, Tibetan Plateau, based on ICESat data for 2003–09. Annals of Glaciology, 2014; 55(66): 239–247.
Dewberry. Final Report of the National Enhanced Elevation Assessment, 2011.
Meng X, Currit N, Zhao K. Ground filtering algorithms for airborne LiDAR data: A review of critical issues. Remote Sensing, 2010; 2(3): 833–860.
Wang X, Cheng X, Li Z, Huang H, Niu Z, Li X, et al. Lake water footprint identification from time-series ICESat/GLAS data. IEEE Geoscience and Remote Sensing Letters, 2012; 9(3): 333–337.
Gao L, Liao J, Shen G. Monitoring lake-level changes in the Qinghai–Tibetan Plateau using radar altimeter data (2002–2012). Journal of Applied Remote Sensing, 2013; 7(23): 8628–8652.
Popescu SC, Zhao K, Neuenschwander A, Lin C. Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sensing of Environment, 2011; 115(11): 2786–2797.
Zhao K, Popescu S. Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sensing of Environment, 2009; 113(8): 1628–1645.
Cornette J L. Gauss-Vanícek and Fourier transform spectral analyses of marine diversity. Computing in Science & Engineering, 2007; 9(4): 61–63.
Copyright (c)