Adaptive turning control for an agricultural robot tractor
Abstract
Keywords: autonomous tractor, path planning, dynamic circle-back turning, switch-back turning, robot tractor, reinforcement learning
DOI: 10.25165/j.ijabe.20181106.3605
Citation: Wang H, Noguchi N. Adaptive turning control for an agricultural robot tractor. Int J Agric & Biol Eng, 2018; 11(6): 113–119.
Keywords
Full Text:
PDFReferences
Torisu R, Tanaka K, Imae J, Ishikwa T. Optimal Path of Headland for Tractors by Optimal Control Theory (Part1): Formulation of Optimal Control Problems and Forward Maneuver of Tractors. J Japanese Soc Agric Mach, 1997; 59: 3–10.
Takai R, Barawid O, Noguchi N. Autonomous navigation system of crawler-type robot tractor. IFAC Proc, 2011; 18: 14165–14169.
Torisu R, Tanaka K, Imae J. Optimal path of headland for tractors by optimal control theory (Part 2): Combination of forward and backward maneuvers. J Japanese Soc Agric Mach, 1998; 60: 45–53.
Kise M, Noguchi N, Ishii K, Terao H. Field mobile robot navigated by RTK-GPS and FOG (Part 2): Autonomous operation by applying navigation map. J Japanese Soc Agric Mach, 2001; 63: 80–85.
Jin J. Optimal field coverage path planning on 2D and 3D surfaces. Iowa State University, 2009.
Tu X. Robust navigation control and headland turning optimization of agricultural vehicles. Iowa State University, 2013.
Yang L. Development of a robot tractor implemented an omni-directional safety system. Hokkaido University, 2013.
Kise M, Noguchi N, Ishii K, Terao H. Field mobile robot navigated by RTK-GPS and FOG (Part 3): Enhancement of turning accuracy by creating path applied with motion constraints. J Japanese Soc Agric Mach, 2002; 64: 102–110.
Cariou C, Lenain R, Thuilot B, Humbert T, Berducat M. Maneuvers automation for agricultural vehicle in headland. AgEng 2010 Conf, , Clermont-Ferrand, Fr 2010: 1–10.
Sabelhaus D, Lammers P S, Peter L, Röben F. Path planning of headland turn manoeuvres. Landtechnik, 2015; 70(4): 123–131.
Backman J, Piirainen P, Oksanen T. Smooth turning path generation for agricultural vehicles in headlands. Biosyst Eng, 2015; 139: 76–86.
Kise M, Noguchi N, Ishii K, Terao H. Field mobile robot navigated by RTK-GPS and FOG (Part 4): The steering controller applied optimal controller. J Japanese Soc Agric Mach, 2002; 64: 76–84.
Kraus T, Ferreau H J, Kayacan E, Ramon H, de Baerdemaeker J, Diehl M, et al. Moving horizon estimation and nonlinear model predictive control for autonomous agricultural vehicles. Comput Electron Agric, 2013; 98: 25–33.
Karkee M, Steward B L. Study of the open and closed loop characteristics of a tractor and a single axle towed implement system. J Terramechanics, 2010; 47: 379–393.
Backman J, Oksanen T, Visala A. Navigation system for agricultural machines: Nonlinear model predictive path tracking. Comput Electron Agric, 2012; 82: 32–43.
Yoshida Y, Wang Q, Oya M, Okumura K. Adaptive longitudinal velocity and lane keeping control of four-wheel-steering vehicles. 2007 SICE Annu. Conf., IEEE, 2007; pp. 1305–1310.
Oya M, Wang Q. Adaptive lane keeping controller for four-wheel-steering vehicles. 2007 IEEE Int. Conf. Control Autom., IEEE, 2007; pp. 1942–1947.
Petrov P, Nashashibi F. Modeling and nonlinear adaptive control for autonomous vehicle overtaking. IEEE Trans Intell Transp Syst, 2014; 15: 1643–1656.
Tashiro T. Vehicle steering control with MPC for target trajectory tracking of autonomous reverse parking. 2013 IEEE Int. Conf. Control Appl., IEEE, 2013; pp. 247–251.
Wang H, Noguchi N. Autonomous maneuvers of a robotic tractor for farming. 2016 IEEE/SICE Int. Symp. Syst. Integr., IEEE, 2016; pp. 592–597.
YANMAR. Main Specifications of Tractor EG97・EG105. https://www.yanmar.com/jp/agri/products/tractor/eg97-105/spec/ [accessed on November 10, 2017].
Copyright (c) 2018 International Journal of Agricultural and Biological Engineering