Intelligent automated system based on a fuzzy logic system for plant protection product control in orchards
Abstract
Keywords: plant protection product, boom sprayer, electromagnetic valve, fuzzy logic algorithm, tree canopy
DOI: 10.25165/j.ijabe.20191203.4476
Citation: Berk P, Belšak A, Stajnko D, Lakota M, Muškinja N, Hočevar M, et al. Intelligent automated system based on a fuzzy logic system for plant protection product control in orchards. Int J Agric & Biol Eng, 2019; 12(3): 92–102.
Keywords
Full Text:
PDFReferences
Ladd T L, Reichard D L. Photoelectrically-operated intermittent sprayers for insecticidal control of horticultural pests. Journal Economic Entomology, 1980; 73: 525–528.
Giles D K, Delwiche M J, Dodd R B. Sprayer control by sensing orchard crop characteristics: orchard architecture and spray liquid savings, Journal Agricultural Engineering Research, 1989; 43: 271–289.
Balsari P, Tamagnone M. An ultrasonic airblast sprayer, AgEng 98 International Conference, EurAgEng Paper No. 98A-017, 1998; Oslo, Norway.
Doruchowski G, Jaeken P, Holownicki R. Target detection as a tool of selective spray application on trees and weeds in orchards, SPIE Conference on Precision Agriculture and Biological Quality, Boston. Proc. SPIE 3543, 1998; pp.290–301.
Meron M, Cohen S, Melman G. Tree shape and volume measurement by light interception and aerial photogrammetry, Transactions ASAE, 2000; 43(2): 475–481.
Walklate P J, Cross J V, Richardson G M, Murray R A, Baker D E. Comparison of different spray volume deposition models using LIDAR measurements of apple orchards, Biosystems Engineering, 2002; 82(3): 253–267.
Escolà A, Camp F, Solanelles F, Llorens J, Planas S, Rosell J R, et al. Variable dose rate sprayer prototype for dose adjustment in tree crops according to canopy characteristics measured with ultrasonic and laser LIDAR sensors, Proceedings ECPA-6th European Conference on Precision Agriculture, 2007; pp.563–571.
Solanelles F, Escolà A, Planas S, Rosell J R, Camp F, Gràcia F. An electronic control system for pesticide application proportional to the canopy width of tree crops, Biosystem Engineering, 2006; 95(4): 473–481.
Escolà A, Planas S, Rosell J R, Pomar J, Camp F, Solanelles F, et al. Performance of an ultrasonic ranging sensor in apple tree canopies, Sensors, 2011; 11(3): 2459–2477.
Jejcic V, Godesa T, Hocevar M, Sirok B, Malnersic A, Strancar A, et al. Design and testing of an ultrasound system for targeted spraying in orchards, Journal of Mechanical Engineering, 2011; 57(7-8): 587–598.
Llorens J, Gil E, Llop J, Escolà A. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: Advances to Improve Pesticide Application Methods, Sensors, 2011; 11: 2177–2194.
Sanz Cortiella R, Llorens Calveras J, Escolà A, Arnó Satorra J, Ribes Dasi M, Masip Vilalta J, et al. Innovative LIDAR 3D dynamic measurement system to estimate fruit-tree leaf area, Sensors, 2011; 11: 5769–5791.
Stajnko D, Berk P, Lesnik M, Jejcic V, Lakota M, Strancar A, et al. Programmable ultrasonic sensing system for targeted spraying in orchards, Sensors, 2012; 11: 15500–15519.
Chen Y, Zhu H, Ozkan H E. Development of a variable-rate sprayer with laser scanning sensor to synchronize spray outputs to tree structures, Transactions ASABE, 2012; 55(3): 773–781.
Osterman A, Godesa T, Hocevar M, Sirok B, Stopar M. Real-time positioning algorithm for variable-geometry air-assisted orchard sprayer, Computers and Electronics in Agriculture, 2013; 98: 175–182.
Escolà A, Rosell-Polo J R., Planas S, Gil E, Pomar J, Camp F, et al. Variable rate sprayer. Part 1: Orchard prototype: Design, implementation and validation, Computers and Electronics in Agriculture, 2013; 95: 122–135.
Balsari P., Tamagnone M. An automatic spray control for airblast sprayers: first results. 1997, In: Precision Agriculture ’97, Warwick, UK, 619–626.
Moltó E, Martin B, Gutiérrez A. Pesticide loss reduction by automatic adaptation of spraying on globular trees, Journal of Agricultural Engineering Research, 2001; 78: 35–41.
Planas S, Rosell J R, Gil E, Val L, Escolà A, Solanelles F. Optimizing pesticide spray application in tree crops, In: 2006 ASABE Annual International Meeting, 2006; Portland, USA.
Walklate P J, Cross J V. Regulated dose adjustment of commercial orchard spraying products, Crop protection, 2013; 54: 65–73.
Berk P, Stajnko D, Lakota M, Belsak A. Real time fuzzy logic system for continuous control solenoid valve in the process of applying the plant protection product, Agricultural Engineering, 2015; 15(1): 1–9.
Giles K. Rate spray application without a change in droplet size, Australian Grain, 2009; 6: 38–39.
Mamdani E H, Efstathiou J, Sugijama K. Developments in fuzzy logic control, Proceedings of 23rd conference on decision and control, Las Vegas, USA, 1984; pp.888–893.
Liu F, Zhang J, Chen J. Modeling of flexible wheat straw by discrete element method and its parameter calibration. Int J Agric & Biol Eng, 2018; 11(3): 42–46.
Zimmerman H J. Fuzzy set theory and its applications, Kluwer-Nijhoff Publishing, Boston, USA, 1991.
Berk P, Rakun J, Lakota M, Muskinja N. The influence of distance ultrasonic density meassurements, In: Katalinic B. DAAAM International Scientific Book 2013, Vienna, 2013; pp.637–646.
Water-sensitive paper for monitoring spray distributions. CH–4002. Basle, Switzerland: Syngenta Crop Protection AG, 2002.
Zhang X, Liu D, Fan C, Du J, Meng F, Fang J. A novel and smart automatic light-seeking flowerpot for monitoring flower growth environment, Int J Agric & Biol Eng, 2018; 11(2): 184–189.
Jantzen J. Tuning of fuzzy PID controllers, Technical Report, Dept. of Automation, Technical University of Denmark, 1999.
Copyright (c) 2019 International Journal of Agricultural and Biological Engineering