Effects of operating conditions and pre-densification on the torrefaction products of sorghum straw
Abstract
Keywords: torrefaction, pre-densification, pyrolysis characteristics, operating condition, sorghum straw, heat transfer
DOI: 10.25165/j.ijabe.20201304.5517
Citation: Liu X Z, Yao Z L, Cong H B, Zhao L X, Huo L L, Song J C. Effects of operating conditions and pre-densification on the torrefaction products of sorghum straw. Int J Agric & Biol Eng, 2020; 13(4): 219–225.
Keywords
Full Text:
PDFReferences
Zhang L H, Xu C B, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag, 2010; 51(5): 969–982.
Wu X R, Mclaren J, Madl R, Wang D H. Biofuels from lignocellulosic biomass. In: Singh O, Harvey S (Ed.). Sustainable biotechnology, Dordrecht: Springer, 2010; pp.19–41.
Awika J M, Rooney L W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 2004; 65(9): 1199–1221.
Karunanithy C, Wang Y, Muthukumarappan K, Pugalendhi S. Physiochemical characterization of briquettes made from different feedstocks. Biotechnol Res Int, 2012: 165202. doi: 10.1155/2012/165202.
Wang Y P, Zhang S M, Wu Q H, Duan D L, Liu Y H, Ruan R, et al. Microwave-assisted pyrolysis of vegetable oil soapstock: Comparative study of rapeseed, sunflower, corn, soybean, rice, and peanut oil soapstock. Int J Agri & Biol Eng, 2019; 12(6): 202–208.
Li G, Ji F, Bai X, Zhou Y G, Dong R J, Huang Z G. Biorefinery process for production of bioactive compounds and bio-oil from Camellia oleifera shell. Int J Agri & Biol Eng, 2019; 12(1): 208–213.
Ersan Pütün. Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy, 2010; 35(7): 2761–2766.
Shang L, Nielsen N P K, Dahl J, Stelte W, Ahrenfeldt J, Holm J K, et al. Quality effects caused by torrefaction of pellets made from Scots pine. Fuel Process Technol, 2012; 101: 23–28.
Isemin R L, Mikhalev A V, Muratova N S, KoghTatarenko V S, Pitsukha E A. Improving the efficiency of biowaste torrefaction. Thermal Engineering, 2019; 66(7): 521–526.
Das O, Sarmah A K. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments. Sci Total Environ, 2015; 537: 323–334.
Yu S H, Park J J, Kim M S, Kim H Y, Ryu C K, Lee Y W, et al. Improving energy density and grindability of wood pellets by dry torrefaction. Energy Fuels, 2019; 33(9): 8632–8639.
Srinivasan V, Adhikari S, Chattanathan S A, Park S. Catalytic pyrolysis of torrefied biomass for hydrocarbons production. Energy Fuels, 2012; 26(12): 7347–7353.
Wen J L, Sun S L, Yuan T Q, Xu F, Sun R C. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Appl Energy, 2014; 121: 1–9.
Peng F, Peng P, Xu F, Sun R C. Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv, 2012; 30(4): 879–903.
Chen Y Q, Liu B, Yang H P, Yang Q, Chen H P. Evolution of functional groups and pore structure during cotton and corn straws torrefaction and its correlation with hydrophobicity. Fuel, 2014; 137: 41–49.
Jian J, Lu Z M, Yao S C, Li X, Song W F. Comparative study on pyrolysis of wet and dry torrefied beech wood and wheat straw. Energy Fuels, 2019; 33(4): 3267–3274.
Yang H P, Yan R, Chen H P, Zheng C G. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy Fuels, 2005; 20(1): 388–393.
Shevchenko A L, Petrov A E, Sytchev G A, Zaichenko V M. Oxygen influence on the process of low-temperature pyrolysis of biomass. Journal of Physics Conference, 2019; 1147(1): 012091. doi: 10.1088/ 1742-6596/1147/1/012091.
Van Soest P.J. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemists, 1963; 49(4): 546–551.
Brachi P, Miccio F, Miccio M, Ruoppolo G. Torrefaction of tomato peel residues in a fluidized bed of inert particles and a fixed-bed reactor. Energy & Fuels, 2016; 30(6): 4858–4868.
Grigiante M, Antolini D. Mass yield as guide parameter of the torrefaction process. An experimental study of the solid fuel properties referred to two types of biomass. Fuel, 2015; 153: 499–509.
Yang H P, Yan R, Chen H P, Lee D H, Zheng C G. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 2007; 86(12-13): 1781–1788.
Brachi P, Miccio F, Miccio M, Ruoppolo G. Torrefaction of tomato peel residues in a fluidized bed of inert particles and a fixed-bed reactor. Energy Fuels, 2016; 30(6): 4858–4868.
Shen D K, Gu S, Bridgwater A V. The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydr Polym, 2010; 82(1): 39–45.
Xu C, Donald J. Upgrading peat to gas and liquid fuels in supercritical water with catalysts. Fuel, 2012; 102: 16–25.
Chew J J, Doshi V. Recent advances in biomass pretreatment – Torrefaction fundamentals and technology. Renew Sust Energ Rev, 2011; 15(8): 4212–4222.
Dixon A G. Fixed bed catalytic reactor modelling—the radial heat transfer problem. Can J Chem Eng, 2012; 90(3): 507–527.
Pyle D L, Zaror C A. Heat transfer and kinetics in the low temperature pyrolysis of solids. Chem Eng Sci, 1984; 39(1): 147–158.
Cao X F, Zhong L X, Peng X W, Sun S N, Li S M, Liu S J, et al. Comparative study of the pyrolysis of lignocellulose and its major components: Characterization and overall distribution of their biochars and volatiles. Bioresour Technol, 2014; 155: 21–27.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.