Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation
Abstract
Keywords: tracked robot, trajectory control, adaptive backstepping control, neural networks, slip parameter, sliding mode observer
DOI: 10.25165/j.ijabe.20201304.5739
Citation: Lu E, Ma Z, Li Y M, Xu L Z, Tang Z. Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation. Int J Agric & Biol Eng, 2020; 13(4): 178–187.
Keywords
Full Text:
PDFReferences
Chen S Y, Chen W J. Review of tracked mobile robots. Mechanical and Electrical Engineering Magazine, 2007; (12): 109–112. (in Chinese)
Guo T Y, Guo J L, Huang B, Peng H. Power consumption of tracked and wheeled small mobile robots on deformable terrains–model and experimental validation. Mechanism & Machine Theory, 2019; 133: 347–364.
Zeng Q H, Ma X J, Yuan D, Liu C G. Motion decoupling and variable structure control of dual-motor electric drive tracked vehicle. Control Theory & Applications, 2015; 32(8): 1080–1089. (in Chinese)
Bian Y M, Yang M, Liu Y C, Yang G. Research on trajectory tracking control of a tracked mobile robot. Chinese Journal of Construction Machinery, 2018; 16(3): 189–193, 206. (in Chinese)
Han J, Ren G Q, Li D W. Trajectory tracking control for tracked mobile robot with moving limitation. Computer Measurement & Control, 2017; 25(12): 86–89. (in Chinese)
Jiao J, Chen J, Qiao Y, Wang W Z, Wang M S, Gu L C, et al. Adaptive sliding mode control of trajectory tracking based on DC motor drive for agricultural tracked robot. Transactions of the CSAE, 2018; 34(4): 64–70. (in Chinese)
Wang B Y, Gong J W, Gao T Y, Zhang R Z, Chen H Y, Xi J Q. Longitudinal and lateral path following coordinated control method of tracked vehicle based on double-layer driver model. Acta Armamentarii, 2018; 39(9): 1675–1682. (in Chinese)
Asif M, Khan M. J, Cai N. Adaptive sliding mode dynamic controller with integrator in the loop for nonholonomic wheeled mobile robot trajectory tracking. International Journal of Control, 2014; 87(5): 964–975.
Yokoyama M, Ikarashi J, Okawa A. Adaptive control of a skid-steer mobile robot with uncertain cornering stiffness. Mechanical Engineering Journal, 2015; 2(4): 15–00040. doi: 10.1299/mej.15-00040.
Wu X, Jin P, Zou T, Qi Z, Xiao H, Lou P. Backstepping trajectory tracking based on fuzzy sliding mode control for differential mobile robots. J Intell Robot Syst, 2019; 96: 109–121.
Xiong G M, Lu H, Guo K H, Chen H Y. Research on trajectory prediction of tracked vehicles based on real time slip estimation. Acta Armamentarii, 2017; 38(3): 600–607. (in Chinese)
Zhu L, Guo J, Liu G F. Slip estimation method of track robot. Journal of Central South University (Science and Technology), 2013; 44(8): 3173–3178. (in Chinese)
Bei X Y, Ping X L, Gao W Y. Trajectory tracking control of wheeled mobile robots under longitudinal slipping conditions. China Mechanical Engineering, 2018; 29(16): 1958–1964. (in Chinese)
Song Z. B, Zweiri Y. H, Seneviratne L. D, Althoefer K. Non-linear observer for slip estimation of skid-steering vehicles. Proceedings 2006 IEEE International Conference on Robotics and Automation, Orlando: IEEE, 2006; pp.1499–1504.
Song Z B, Song X J, Altheoer K, Zweiri Y, Seneviratne L. Non-linear observer for slip parameter estimation of unmanned wheeled vehicles. 2007 IFAC Proceedings Volumes, Harbin: IEEE, 2007; pp.458–463.
Iossaqui J G, Camino J F, Zampieri D E. A nonlinear control design for tracked robots with longitudinal slip. IFAC Proceedings Volumes, 2011; 44(1): 5932–5937.
Zhao Y, Tian Y T, Lian Y F, Hu L L. A sliding mode observer of road condition estimation for four-wheel-independent-drive electric vehicles. Proceeding of the 11th World Congress on Intelligent Control and Automation, Shenyang: IEEE, 2014; pp.4390–4395.
Kanayama Y, Kimura Y, Miyazaki F, Noguchi T. A stable tracking control method for an autonomous mobile robot. Proceedings, IEEE International Conference on Robotics and Automation, Cincinnati: IEEE, 1990; 1: pp.384–389.
Qu Y, Ning D, Lai Z C, Cheng Q, Mu L N. Neural networks based on PID control for greenhouse temperature. Transactions of the CSAE, 2011; 27(2): 307–311.
Liu J K. Advanced PID Control MATLAB simulation (2nd Edition). Beijing: Publishing House of Electronics Industry, 2004; pp.162–164.
Sun S Q, Li S. Application of PID neural network in headbox multivariable decoupling control. 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), Yichang: IEEE, 2012; pp.2427–2430.
Zhou B, Dai X Z, Han J D. Online modelling and tracking control of mobile robots with slippage in outdoor environments. Robot, 2011; 33(3): 265–272. (in Chinese)
Wang Z Y, Li Y D, Zhu L. Dual adaptive neural sliding mode control of nonholonomic mobile robot. Journal of Mechanical Engineering, 2010; 46(23): 16–22. (in Chinese)
Lu E, Li W, Yang X F, Xu S Y. Composite sliding mode control of a permanent magnet direct-driven system for a mining scraper conveyor. IEEE Access, 2017; 5: 22399–22408.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.