CA-YOLOv5: Detection model for healthy and diseased silkworms in mixed conditions based on improved YOLOv5
Abstract
Keywords: diseased silkworm detection, YOLOv5; mixed conditions, image attention mechanism, object detection
DOI: 10.25165/j.ijabe.20231606.7854
Citation: Shi H K, Xiao W F, Zhu S P, Li L B, Zhang J F. CA-YOLOv5: Detection model for healthy and diseased silkworms in mixed conditions based on improved YOLOv5. Int J Agric & Biol Eng, 2023; 16(6): 236–245.
Keywords
Full Text:
PDFReferences
Jiang L, Zhao P, Xia Q Y. Research progress and prospect of silkworm molecular breeding for disease resistance. Acta Sericologica Sinica, 2014; 40(4): 571–575. (in Chinese)
Xu A Y, Qian H Y, Sun P J, Liu M Z, Lin C L, Li G, et al. Breeding of a new silkworm variety Huakang 3 with resistance to Bombyx mori Nucleopolyhedrosis. Acta Sericologica Sinica, 2019; 45(2): 201–211. (in Chinese)
Shi H K, Jiang M, Li L B, Wu J M, Ye J J, Ma Y, et al. Design of young silkworm feeding machine with spiral lifting system and its production test. Acta Sericologica Sinica, 2018; 44(6): 891–897. (in Chinese)
Shi H K, Tian Y Y, Yang C, Chen Y, Su S Y, Zhang Z Y, et al. Research on intelligent recognition of silkworm larvae species based on convolutional neural network. Journal of Southwestern University (Natural Science Edition), 2020; 42(12): 34–45. (in Chinese)
Yu Y D, Gao P F, Zhao Y Z, Pan G Q, Chen T. Automatic male and female identification of silkworm pupae based on deep convolutional neural network. Acta Sericologica Sinica, 2020; 46(2): 197–203. (in Chinese)
Li S J, Sun W H, Liang M, Shao T F, Shen J. Design of real-time cocoon species detection system based on deep learning. Shanghai Textile Science & Technology, 2021; 49(11): 53–55,58. (in Chinese)
He R M, Zheng K F, Wei Q Y, Zhang X B, Zhang J, Zhu Y H, et al. Identification and counting of silkworms in factory farm using improved Mask R-CNN model. Smart Agriculture, 2022; 4(2): 163–173. (in Chinese)
Wen C M, Wen J, Li J H, Luo Y Y, Chen M B, Xiao Z P, et al. Lightweight silkworm recognition based on Multi-scale feature fusion. Computers and Electronics in Agriculture, 2022; 200: 107234.
Shi H K, Xiao W F, Huang L, Hu C W, Hu G R, Zhang J F. Research on recognition of silkworm diseases based on Convolutional Neural Network. Journal of Chinese Agricultural Mechanization, 2022; 43(1): 150–157. (in Chinese)
Xia D Y, Zhen Y, Cheng A J. Development and application of silkworm disease recognition system based on mobile App.Beijing: In: 10th International Conference on Image and Graphics (ICIG 2019), Cham: Springer, 2019; pp.471-482.
Ding J Y, Cheng A J. An improved similarity algorithm based on deep hash and code bit independence. In: 2019 4th International Conference on Insulating Materials, Material Application and Electrical Engineering. 2019; 440: 032079.
Nicolas C, Francisco M, Gabriel S, Nicolas U, Alexander K, Sergey Z. End-to-end object detection with transformers. arXiv e-Prints archive, 2020. arXiv: 2005.12872.
Redmon J, Farhadi A. YOLOv3: An Incremental Improvement. arXiv e-Prints archive, 2018. arXiv: 1804.02767.
Glenn J. yolov5. Git code. Available: https://github.com/ultralytics/yolov5. Accessed on [2022-03-20
Wang C Y, Liao M H Y, Yeh I, Wu Y H, Chen P Y, Hsieh J W. CSPNet: A new backbone that can enhance learning capability of CNN. arXiv e-Prints archive, 2019. arXiv: 1911.11929.
Qi J T, Liu X N, Liu K, Xu F R, Guo H, Tian X L, et al. An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease. Computer and Electronics in Agriculture, 2022; 194: 106780.
Ning J F, Lin J Y, Yang S Q, Wang Y S, Lan X Y. Face recognition method of dairy goat based on improved YOLO v5s. Transactions of the CSAM, 2023; 54(4): 331–337. (in Chinese)
Yang Q M, Chen S B, Huang Y G, Xiao D Q, Liu Y F, Zhou J X. Pig counting algorithm based on improved YOLO v5n. Transactions of the CSAM, 2023; 54(1): 251–262. (in Chinese)
Xue H X, Shen M X, Liu L S, Chen J X, Shan W P, Sun Y W. Estrus detection method of parturient sows based on improved YOLO v5s. Transactions of the CSAM, 2023; 54(1): 263–270. (in Chinese)
Ma H X, Zhang M, Dong K B, Wei S H, Zhang R, Wang S X. Research of locust recognition in Ningxia grassland based on improved YOLO v5. Transactions of the CSAM, 2022; 53(11): 270–279. (in Chinese)
Wang Q F, Cheng M, Huang S, Cai Z J, Zhang J L, Yuan H B. A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum Dunal seedlings. Computers and Electronics in Agriculture, 2022; 199: 107194.
Li R, Wu Y P. Improved YOLO v5 wheat ear detection algorithm based on attention mechanism. Electronics, 2022; 11(11): 1673.
Liu Z, Mao H, Wu C Y, Feichtenhofer C, Darrell T, Xie S. A ConvNet for the 2020s. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022; pp.11966–11976.
Wang Q L, Wu B G, Zhu P F, Li P H, Zuo W M, Hu Q H. ECA-Net: Efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2020; 11531–11539.
Qin Q, Dong Z Q, Lei X J, Cao M Y, Tang L, Shi M N, et al. Characteristic analysis of resistance to BmNPV in CVDAR strain of silkworm. Acta Microbiologica Sinica, 2019; 59(12): 2390–2400. (in Chinese)
Dong Z Q, Lei X J, Qin Q, Zhang X L, Tang L, Shi M N, et al. Mechanism analysis of Anti-BmNPV resistant strain NC99R. Chinese Journal of Biotechnology, 2020; 36(1): 100–108. (in Chinese)
Tzutalin D. LabelImg. Git code. 2015. Available:https://github.com/tzutalin/labelImg. Accessed on [2021-09-16
Zhang Z Z, Lan C L, Zeng W J, Jin X, Chen Z. Relation-aware global attention. arXiv e-prints archive, 2022. arXiv: 2201.03545.
Hu J, Shen L, Albanie S, Sun G, Wu E H. Squeeze-and-Excitation Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020; 42(8): 2011–2023.
Loshchilov I, Hutter F. SGDR: Stochastic Gradient Descent with warm restarts. arXiv e-prints archive, 2017. arXiv: 1608.03983.
Rezatofighi H, Tsoi N, Gwak J Y, Sadeghian A, Reid I, Savarese S. Generalized intersection over union: A metric and a loss for bounding box regression. In: P2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach: IEEE, 2019; pp.658–666.
Bochkovskiy A, Wang C, Liao H M. YOLOv4: Optimal speed and accuracy of object detection. arXiv e-prints archive, 2020. arXiv: 2004.10934.
Zhou X, Wang D, Krähenbühl P. Objects as Points. arXiv e-prints archive, 2019. arXiv: 1904.07850.
Tan M X, Pang R M, Le Q V. EfficientDet: Scalable and efficient object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle: IEEE, 2020; pp.10778–10787.
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y, et al. SSD: Single Shot MultiBox Detector. arXiv preprint arXiv: 1512.02325.
Ge Z, Liu S, Wang F, Li Z, Sun J. YOLOX: Exceeding YOLO series in 2021. arXiv e-prints archive, 2021. arXiv 2107.08430.
Cao Y Y, Chen J, Zhang Z C. A sheep dynamic counting scheme based on the fusion between an improved-sparrow-search YOLOv5x-ECA model and few-shot deepsort algorithm. Computers and Electronics in Agriculture, 2023; 206: 107696.
Lu S L, Chen W K, Zhang X, Karkee M. Canopy-attention-YOLOv4-based immature/mature apple fruit detection on dense-foliage tree architectures for early crop load estimation. Computer and Electronics in Agriculture, 2022; 193: 106696.
Xu L J, Wang Y H, Shi X S, Tang Z L, Chen X Y, Wang Y C, et al. Real-time and accurate detection of citrus in complex scenes based on HPL-YOLOv4. Computers and Electronics in Agriculture, 2023; 205: 107590.
Zhang L, Zhou X H, Li B B, Zhang H X, Duan Q L. Automatic shrimp counting method using local images and lightweight YOLOv4. Biosystems Engineering, 2022; 220: 39–54.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.