Detection and threshold-adaptive segmentation of farmland residual plastic film images based on CBAM-DBNet
Abstract
Keywords: binarization threshold adaptive, residual plastic film, object detection, image segmentation, UAV remote sensing
DOI: 10.25165/j.ijabe.20241705.8069
Citation: Xiong L J, Hu C, Wang X F, Wang H B, Tang X Y, Wang X W. Detection and threshold-adaptive segmentation of farmland residual plastic film images based on CBAM-DBNet. Int J Agric & Biol Eng, 2024; 17(5): 231-238.
Keywords
Full Text:
PDFReferences
Sun D B, Li H G, Wang E L, He W Q, Hao W P, Yan C R, et al. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. National Science Review, 2020; 7(10): 1523–1526.
Hu C, Lu B, Guo W S, Tang X Y, Wang X F, Xue Y H, et al. Distribution of microplastics in mulched soil in Xinjiang, China. Int J Agric & Biol Eng, 2021; 14(2): 196–204.
Hu C, Wang X F, Chen X G, Tang X Y, Zhao Y, Yan C R, Current situation and control strategies of residual film pollution in Xinjiang. Transactions of the CSAE, 2019; 35(24): 223–234. (in Chinese)
Hu C, Wang X F, Wang S G, Lu B, Guo W S, Liu C J, et al. Impact of agricultural residual plastic film on the growth and yield of drip-irrigated cotton in arid region of Xinjiang, China. Int J Agric & Biol Eng, 2020; 13(1): 160–169.
Zhao Y, Chen X G, Wen H J, Zheng X, Niu Q, Kang J M. Research status and prospect of control technology for residual plastic film pollution in farmland. Transactions of the CSAM, 2017; 48(6): 1–14. (in Chinese)
Niu R K, Wang X F, Hu C, Hou S L, Lu B, Li J B. Analysis of the current situations of plastic films residue pollution of cotton field in Xinjiang Aksu Area. Xinjiang Agricultural Sciences, 2016; 53(2): 283–288. (in Chinese)
Zhang D, Liu H B, Hu W L, Qin X H, Ma X W, Yan C R, et al. The status and distribution characteristics of residual mulching film in Xinjiang. Journal of Integrative Agriculture, 2016; 15(11): 2639–2646.
He H J, Wang Z H, Guo L, Zheng X R, Zhang J Z, Li W H, et al. Distribution characteristics of residual film over a cotton field under long-term film mulching and drip irrigation in an oasis agroecosystem. Soil and Tillage Research, 2018; 180: 194–203.
Liang C J, Wu X M, Wang F, Song Z J, Zhang F G. Research on recognition algorithm of field mulch film based on unmanned aerial vehicle. Acta Agriculturae Zhejiangensis, 2019; 31(6): 1005–1011. (in Chinese)
Zhu X F, Li S B, Xiao G F. Method on extraction of area and distribution of plastic-mulched farmland based on UAV images. Transactions of the CSAE, 2019; 35(4): 106–113. (in Chinese)
Wu X M, Liang C J, Zhang D B, Yu L H, Zhang F G. Identification method of plastic film residue based on UAV remote sensing images. Transactions of the CSAM, 2020; 51(8): 189–195. (in Chinese)
Jiang S Q, Zhang H D, Hua Y J. Research on location of residual plastic film based on computer vision. Journal of Chinese Agricultural Mechanization, 2016; 37(11): 150–154. (in Chinese)
Yang K, Liu H, Wang P, Meng Z J, Chen J P. Convolutional neural network-based automatic image recognition for agricultural machinery. Int J Agric & Biol Eng, 2018; 11(4): 200–206.
Zhao J, Pan F J, Li Z M, Lan Y B, Lu L Q, Yang D J, et al. Detection of cotton waterlogging stress based on hyperspectral images and convolutional neural network. Int J Agric & Biol Eng, 2021; 14(2): 167–174.
Ma Z, Wang Y, Zhang T S, Wang H G, Jia Y J, Gao R, et al. Maize leaf disease identification using deep transfer convolutional neural networks. Int J Agric & Biol Eng, 2022; 15(5): 187–195.
Zhang X J, Huang S, Jin W, Yan J S, Shi Z L, Zhou X C, et al. Identification method of agricultural film residue based on improved faster R-CNN. Journal of Hunan University (Natural Sciences), 2021; 48(8): 161–168. (in Chinese)
Zhai Z Q, Chen X G, Qiu F S, Meng Q J, Wang H Y, Zhang R Y. Detecting surface residual film coverage rate in pre-sowing cotton fields using pixel block and machine learning. Transactions of the CSAE, 2022; 38(6): 140–147. (in Chinese)
Zhai Z Q, Chen X G, Zhang R Y, Qiu F S, Meng Q J, Yang J K, et al. Evaluation of residual plastic film pollution in pre-sowing cotton field using UAV imaging and semantic segmentation. Frontiers in Plant Science, 2022; 13: 991191.
Qiu F S, Zhai Z Q, Li Y L, Yang J K, Wang H Y, Zhang R Y. UAV imaging and deep learning based method for predicting residual film in cotton field plough layer. Frontiers in Plant Science, 2022; 13: 1010474.
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2012; 60(6): 84–90.
Burgos-Artizzu X P, Ribeiro A, Guijarro M, Pajares G. Real-time image processing for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture, 2011; 75(2): 337–346.
Liao M H, Wan Z Y, Yao C, Chen K, Bai X. Real-time scene text detection with differentiable binarization. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2019; 34(7): 11474–11481.
Woo S, Park J, Lee J-Y, Kweno I S. CBAM: Convolutional Block Attention Module. In: Proceedings of the European Conference on Computer Vision – ECCV 2018, 2018; pp.3-19. doi: 10.1007/978-3-030-01234-2_1.
Lin T-Y, Dollar P, Girishick R, He K M, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu: IEEE, 2017; pp.936-944.
Shrivastava A, Gupta A, Girshick R. Training region-based object detectors with online hard example mining. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016; pp.761-769.
He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016; pp.770–778. doi:10.1109/CVPR.2016.90.
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus: IEEE, 2014; pp.580–587. doi: 10.1109/cvpr.2014.81.
Sun F, Tian X D. Lecture video automatic summarization system based on DBNet and Kalman filtering. Mathematical Problems in Engineering, 2022; 2022(1): 5303503.
Vatti B R. A generic solution to polygon clipping. Communications of the ACM, 1992; 35(7): 56–63.
De Myttenaere A, Golden B, Le Grand B, Rossi Fabrice. Mean absolute percentage error for regression models. Neurocomputing, 2016; 192: 38–48.
Karunasingha D S K. Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 2022; 585: 609–629.
Willmott C J, Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 2005; 30(1): 79–82.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.