Method for detecting dead caged laying ducks based on infrared thermal imaging
Abstract
Keywords: caged laying duck, object detection algorithm, YOLO, infrared thermal imaging, dead poultry
DOI: 10.25165/j.ijabe.20241706.8314
Citation: Yan Y, Wang Q H, Lin W G, Wang S C, Gu Y, Heng Y F. Method for detecting dead caged laying ducks based on infrared thermal imaging. Int J Agric & Biol Eng, 2024; 17(6): 101–110.
Keywords
Full Text:
PDFReferences
Li Q X, Shao Z Y, Zhou W H, Su Q R, Wang Q H. MobileOne-YOLO: Improving the YOLOv7 network for the detection of unfertilized duck eggs and early duck embryo development-a novel approach. Computers and Electronics in Agriculture, 2023; 214: 108316.
Huang C Y, Yu X C, Bao L, Mai L J, Li A. Ammonia negatively impacted egg production and altered the diversity of microbial communities in cage-reared Muscovy ducks. Poultry Science, 2024; 103: 103938.
Liu H H, Qi J W, Yang Q L, Tang Q, Qi J J, Li Y Y, et al. Effects of cage and floor rearing systems on the metabolic components of the uropygial gland in ducks. Animals, 2022; 12(2): 214.
Gu Y, Wang S C, Yan Y, Tang S J, Zhao S D, et al. Identification and analysis of emergency behavior of cage-reared laying ducks based on YoloV5. Agriculture, 2022; 12(4): 485.
Wibisono F M, Wibisono F J, Effendi M H, Plumeriastuti H, Hidayatullah A R, Hartadi E B, Sofiana E D. A Review of Salmonellosis on Poultry Farms: Public Health Importance. Systematic Reviews in Pharmacy, 2020; 11(9): 481–486.
Saraiva S, Saraiva C, Oliveira I, Stilwell G, Esteves A. Effects of age, weight, and housing system on prevalence of dead on arrival and carcass condemnation causes in laying hens. Poultry Science, 2021; 100: 100910.
Jia W E, Qu H, Ma J, Xia Y T, Cui D J, Liu Y Y, et al. Adjacent age classification algorithm of yellow-feathered chickens based on multi-scale feature fusion. Computers and Electronics in Agriculture, 2022; 200: 107264.
Fang C, Zhang T M, Zheng H K, Huang J D, Cuan K X. Pose estimation and behavior classification of broiler chickens based on deep neural networks. Computers and Electronics in Agriculture, 2021; 180: 105863,
Jiang P Y, Ergu D, Liu F Y, Cai Y, Ma B. A Review of Yolo algorithm developments. Procedia Computer Science, 2022; 199(11): 1066–1073.
Zhai S P, Shang D R, Wang S H, Dong S S. DF-SSD: An improved SSD object detection algorithm based on DenseNet and feature fusion. IEEE Access, 2020; 8: 24344–24357.
Zhao Y A, Lv W Y, Xu S L, Wei J M, Wang G Z, Dang Q Q. Detrs beat yolos on real-time object detection. In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, 2024; pp.16965–16974.
Xiao D Q, Wang H D, Liu Y F, Li W G, Li H B. DHSW-YOLO: A duck flock daily behavior recognition model adaptable to bright and dark conditions. Computers and Electronics in Agriculture, 2024; 225: 109281.
Bist R B, Yang X, Subedi S, Chai L. Automatic detection of bumblefoot in cage-free hens using computer vision technologies. Poultry Science, 2024; 103(7): 103780.
Li X X, Cai M R, Tan X J, Yin C C, Chen W H, Liu Z, et al. An efficient transformer network for detecting multi-scale chicken in complex free-range farming environments via improved RT-DETR. Computers and Electronics in Agriculture, 2024; 224: 109160.
Subedi S, Bist R, Yang X, Chai L. Tracking pecking behaviors and damages of cage-free laying hens with machine vision technologies. Computers and Electronics in Agriculture, 2023; 204: 107545.
Bloch V, Barchilon N, Halachmi I, Druyan S. Automatic broiler temperature measuring by thermal camera. Biosystems Engineering, 2020; 199: 127–134.
Oh S-I, Lee H S, Bui V N, Dao T D, Bui N., Le T D, et al. Dynamic variations in infrared skin temperature of weaned pigs experimentally inoculated with the African swine fever virus: A pilot study. Veterinary Sciences, 2021; 8(10): 223.
Jorquera-Chavez M, Fuentes S, Dunshea F R, Warner R D, Poblete T, Morrison R S, et al. Remotely sensed imagery for early detection of respiratory disease in pigs: A pilot study. Animals, 2020; 10(3): 451.
Xie Q J, Wu M R, Bao J, Zheng P, Liu W Y, Liu X F, et al. A deep learning-based detection method for pig body temperature using infrared thermography. Computers and Electronics in Agriculture, 2023; 213: 108200.
Schreiter R, Freick M. Research Note: Is infrared thermography an appropriate method for early detection and objective quantification of plumage damage in white and brown feathered laying hens? Poultry Science, 2022; 101(9): 102022.
Wang Y, Kang X, He Z, Feng Y, Liu G. Accurate detection of dairy cow mastitis with deep learning technology: A new and comprehensive detection method based on infrared thermal images. Animal, 2022; 16(10): 100646.
Pacheco V M, Sousa R V, Sardinha E J S, Rodrigues A V S, Brown-Brandl T M, Martello L S. Deep learning-based model classifies thermal conditions in dairy cows using infrared thermography. Biosystems Engineering, 2022; 221: 154–163.
Cai Z J, Cui J L, Yuan H B, Cheng M. Application and research progress of infrared thermography in temperature measurement of livestock and poultry animals: A review. Computers and Electronics in Agriculture, 2023; 205: 107586.
Sohan M, Sai Ram T, Reddy C V R. A review on yolov8 and its advancements. In: Jacob I J, Piramuthu S, Falkowski-Gilski P. (Ed.). Singapore: Springer. International Conference on Data Intelligence and Cognitive Informatics. Springer, Singapore, 2024; pp.529–545.
Ma X, Dai X Y, Bai Y, Wang Y Z, Fu Y. Rewrite the Stars. In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, 2024; pp.5694–5703.
Lau K W, Po L M, Rehman Y A U. Large separable kernel attention: Rethinking the large kernel attention design in CNN. Expert Systems with Applications, 2024; 236: 121352.
Guo M-H, Lu C-Z, Liu Z-N, Cheng M-M, Hu S-M. Visual attention network. Computational Visual Media; 2023; 9(4): 733–752.
Lyu C, Zhang W W, Huang H A, Zhou Y, Wang Y D, Liu Y Y, et al. Rtmdet: An empirical study of designing real-time object detectors. arXiv preprint arXiv: 2212.07784, 2022; doi: 10.48550/arXiv.2212.07784.
Yang M Z, Han G Q, Yan B, Zhang W H, Qi J Q, Lu H C, et al. Hybrid-sort: Weak cues matter for online multi-object tracking. Proceedings of the AAAI Conference on Artificial Intelligence, 2024; 38(7): 6504–6512.
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv: 2004.10934, 2020. doi: 10.48550/arXiv.2004.10934.
Li C Y, Li L L, Jiang H L, Weng K H, Geng Y F, Li L, et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv preprint arXiv: 2209.02976, 2022. doi: 10.48550/arXiv.2209.02976.
Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada: IEEE, 2023; pp.7464–7475.
Wang C Y, Yeh I H, Liao H Y M. Yolov9: Learning what you want to learn using programmable gradient information. arXiv preprint arXiv: 2402.13616, 2024. doi: 10.48550/arXiv.2402.13616.
Aharon N, Orfaig R, Bobrovsky B-Z. BoT-SORT: Robust associations multi-pedestrian tracking. arXiv: 2206.14651, 2022; doi: 10.48550/arXiv.2206.14651.
Zhang Y F, Sun P Z, Jiang Y, Yu D D, Weng F C, Yuan Z H, et al. Bytetrack: Multi-object tracking by associating every detection box. In: Computer Vision - ECCV 2022. ECCV 2022, Cham: Springer, 2022; doi: 10.1007/978-3-031-20047-2_1.
Maggiolino G, Ahmad A, Cao J K, Kitani K. Deep OC-SORT: Multi-pedestrian tracking by adaptive re-identification. In: 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia: IEEE, 2023; pp.3025–3029.
Cao J K, Pang J M, Weng X S, Khirodkar R, Kitani K. Observation-centric sort: Rethinking sort for robust multi-object tracking. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada: IEEE, 2023; pp.9686–9696.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.