Method for the hyperspectral inversion of the phosphorus content of rice leaves in cold northern China
Abstract
Keywords: rice, hyperspectral data, phosphorus content, bat algorithm, inversion model
DOI: 10.25165/j.ijabe.20241706.8464
Citation: Yu F H, Zhang H G, Bai J C, Xiang S, Xu T Y. Method for the hyperspectral inversion of the phosphorus content of rice leaves in cold northern China. Int J Agric & Biol Eng, 2024; 17(6): 256–263.
Keywords
Full Text:
PDFReferences
Ramoelo A, Skidmore A K, Cho M A, Mathieu R, Heitkonig I M A, Dudeni-Tlhone N, et al. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data. ISPRS Journal of Photogrammetry and Remote Sensing, 2013; 82: 27–40.
Siedliska A, Baranowski P, Pastuszka-Woźniak J, Zubik M, Krzyszczak J. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance. BMC Plant Biology, 2021; 21: 28.
de Oliveira K M, Furlanetto R H, Rodrigues M, dos Santos G L A A, Reis A S, Crusiol L G T, et al. Assessing phosphorus nutritional status in maize plants using leaf-based hyperspectral measurements and multivariate analysis. International Journal of Remote Sensing, 2022; 43(7): 2560–2580.
Song X, Xu D Y, Huang C C, Zhang K K, Huang S M, Guo D D, et al. Monitoring of nitrogen accumulation in wheat plants based on hyperspectral data. Remote Sensing Applications: Society and Environment, 2021; 23: 100598.
Lu J S, Li W Y, Yu M L, Zhang X B, Ma Y, Su X, et al. Estimation of rice plant potassium accumulation based on non-negative matrix factorization using hyperspectral reflectance. Precision Agriculture, 2021; 22(1): 51–74.
Cao Y L, Jiang K L, Wu J X, Yu F H, Du W, Xu T Y. Inversion modeling of japonica rice canopy chlorophyll content with UAV hyperspectral remote sensing. PloS One, 2020; 15(9): e0238530.
Liu W, Sun C F, Zhao Y N, Xu F, Song Y L, Fan J R, et al. Monitoring of wheat powdery mildew under different nitrogen input levels using hyperspectral remote sensing. Remote Sensing, 2021; 13(18): 3753.
Li T S, Zhu Z, Cui J, Chen J H, Shi X Y, Zhao X, et al. Monitoring of leaf nitrogen content of winter wheat using multi-angle hyperspectral data. International Journal of Remote Sensing, 2021; 42(12): 4672–4692.
Tian Y C, Yao X, Yang J, Cao W X, Zhu Y. Extracting red edge position parameters from ground-and space-based hyperspectral data for estimation of canopy leaf nitrogen concentration in rice. Plant Production Science, 2011; 14(3): 270–281.
Wang L, Chen S S, Li D, Wang C Y, Jiang H, Zhang Q, et al. Estimation of paddy rice nitrogen content and accumulation both at leaf and plant levels from UAV hyperspectral Imagery. Remote Sensing, 2021; 13(15): 2956.
Tian Y C, Gu K J, Chu X, Yao X, Cao W X, Zhu Y. Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant and Soil, 2014; 376(1): 193–209.
Tan K Z, Wang S W, Song Y Z, Liu Y, Gong Z P. Estimating nitrogen status of rice canopy using hyperspectral reflectance combined with BPSO-SVR in cold region. Chemometrics and Intelligent Laboratory Systems, 2018; 172: 68–79.
Liu M L, Liu X N, Ding W C, Wu L. Monitoring stress levels on rice with heavy metal pollution from hyperspectral reflectance data using wavelet-fractal analysis. International Journal of Applied Earth Observation and Geoinformation, 2011; 13(2): 246–255.
Guo B B, Qi S L, Heng Y R, Duan J Z, Zhang H Y, Wu Y P, et al. Remotely assessing leaf N uptake in winter wheat based on canopy hyperspectral red-edge absorption. European Journal of Agronomy, 2017; 82 (Part A): 113–124.
Strachan I B, Pattey E, Boisvert J B. Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance. Remote Sensing of Environment, 2002; 80(2): 213–224.
Mahajan G R, Sahoo R N, Pandey R N, Gupta V K, Kumar D. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precision Agriculture, 2014; 15(5): 499–522.
Mutanga O, Kumar L. Estimating and mapping grass phosphorus concentration in an African savanna using hyperspectral image data. International Journal of Remote Sensing, 2007; 28(21): 4897–4911.
Ball K R, Liu H, Brien C, Berger B, Power S A, Pendall E. Hyperspectral imaging predicts yield and nitrogen content in grass-legume polycultures. Precision Agriculture, 2022; 23: 2270–2288.
Chen S M, Hu T T, Luo L H, He Q, Zhang S W, Lu J S. Prediction of nitrogen, phosphorus, and potassium contents in apple tree leaves based on in-situ canopy hyperspectral reflectance using stacked ensemble extreme learning machine model. Journal of Soil Science and Plant Nutrition, 2022; 22: 10–24.
Guo P T, Shi Z, Li M F, Luo W, Cha Z Z. A robust method to estimate foliar phosphorus of rubber trees with hyperspectral reflectance. Industrial Crops and Products, 2018; 126: 1–12.
Farrell M D, Mersereau R M. On the impact of PCA dimension reduction for hyperspectral detection of difficult targets. IEEE Geoscience and Remote Sensing Letters, 2005; 2(2): 192–195.
Bandos T V, Bruzzone L, Camps-Valls G. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Transactions on Geoscience and Remote Sensing, 2009; 47(3): 862–873.
Yi Q X, Huang J F, Wang F M, Wang X Z, Liu Z Y. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network. Environmental Science & Technology, 2007; 41(19): 6770–6775.
Ye A S, Zhou X B, Miao F. Innovative hyperspectral image classification approach using optimized CNN and ELM. Electronics, 2022; 11(5): 775.
Singh M, Chauhan S. A hybrid-extreme learning machine based ensemble method for online dynamic security assessment of power systems. Electric Power Systems Research, 2023; 214: 108923.
Yang X. A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO). 2010; pp.65–74. doi: 10.1007/978-3-642-12538-6_6.
Xia C, Yang S, Huang M, Zhu Q B, Guo Y, Qin J W. Maize seed classification using hyperspectral image coupled with multi-linear discriminant analysis. Infrared Physics & Technology, 2019; 103: 103077.
Prendergast L A, Smith J A. Influence functions for linear discriminant analysis: Sensitivity analysis and efficient influence diagnostics. Journal of Multivariate Analysis, 2022; 190: 104993.
Huang G B, Zhu Q Y, Siew C-K. Extreme learning machine: A new learning scheme of feedforward neural networks. IEEE International Joint Conference on Neural Networks, Budapest, 2004; pp.985–990. doi: 10.1109/ijcnn.2004.1380068.
Singh M, Chauhan S. A hybrid-extreme learning machine based ensemble method for online dynamic security assessment of power systems. Electric Power Systems Research, 2023; 214(Part B): 108923.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.