Recognition of the gonad of Pacific oysters via object detection
Abstract
Keywords: pacific oyster gonad, unapparent object detection, target segmentation, deep learning, MRI, R-SINet
DOI: 10.25165/j.ijabe.20241706.8478
Citation: Chen Y F, Yue J, Wang W J, Yang J M, Li Z B. Recognition of the gonad of Pacific oysters via object detection. Int J Agric & Biol Eng, 2024; 17(6): 230–237.
Keywords
Full Text:
PDFReferences
Purdon A, Mole M A, Selier J, Kruger J, Mafumo H, Olivier P I. Using the Rao’s Q diversity index as an indicator of protected area effectiveness in conserving biodiversity. Ecological Informatics, 2022; 72: 101920.
Xia Y, Liu W X, Meng J W, Hu J H, Liu W B, Kang J, et al. Principles, developments, and applications of spatially resolved spectroscopy in agriculture: A review. Frontiers in Plant Science, 2024; 14: 1324881.
Yang L. Introduction to the management of hospital Bruker BioSpec94/30 USR type small animal MRI research equipment. China Equipment Engineering, 2022; 4: 51–52. (in Chinese)
Zhang Z N, Zheng Y, Wang X M. Application of 7.0T small animal MRI to study the progress of Alzheimer’s disease. Chinese Journal of Medical Imaging Technology, 2019; 35(6): 930–933. (in Chinese)
Hang K B, Su W W, Huang J, Bao G J, Liu W H, Li S P. 7.0T small animal MR instrumentation to observe brain injury in a rat model of classic pyrexia. Chinese Journal of Medical Imaging Technology, 2022; 38(4): 481–485. (in Chinese)
Gilchrist S, Kinchesh P, Kersemans V, Beech J, Allen D, Brady M, et al. A simple, open and extensible gating control unit for cardiac and respiratory synchronisation control in small animal MRI and demonstration of its robust performance in steady-state maintained CINE-MRI. Magnetic Resonance Imaging, 2021; 81: 1–9.
Liu W L, Li J H, Li L, Zhang Y H, Yang M G, Liang S C, et al. Enhanced medial prefrontal cortex and hippocampal activity improves memory generalization in APP/PS1 mice: A multimodal animal MRI study. Frontiers in Cellular Neuroscience, 2022; 16: 848967.
Baskaya F, Lemainque T, Klinkhammer B, Koletnik S, von Stillfried S, Talbot S R, et al. Pathophysiologic mapping of chronic liver diseases with longitudinal multiparametric MRI in animal models. Investigative Radiology, 2024; 59(10): 699–710.
Fan D P, Ji G P, Sun G L, Cheng M M, Shen J B, Shao L. Camouflaged object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle: IEEE, 2020; pp.2774–2784. doi: 10.1109/CVPR42600.2020.00285.
Lv Y Q, Zhang J, Dai Y C, Li A X, Liu B W, Barnes N, et al. Simultaneously localize, segment and rank the camouflaged objects. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville: IEEE, 2021; pp.11591–11601. doi: 10.1109/CVPR46437.2021.01142.
Chen S H, Tan X L, Wang B, Hu X L. Reverse attention for salient object detection. In: Computer Vision – ECCV 2018, 2018; 11213: 236–252.
Zhai Q, Li X, Yang F, Jiao Z C, Luo P, Cheng H, et al. MGL: Mutual graph learning for camouflaged object detection. IEEE Transactions on Image Processing, 2023; 32: 1897–1910.
Fan D P, Ji G P, Cheng M M, Shao L. Concealed object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021; 44(10): 6024–6042. https://arxiv.org/pdf/2102.10274.
Jia Q, Yao S L, Liu Y, Fan X, Liu R S, Luo Z X. Segment, magnify and reiterate: Detecting camouflaged objects the hard way. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans: IEEE, 2022; pp.4703-4712. doi: 10.1109/CVPR52688.2022.00467.
Li L P, Shi F P, Wang C X. Fish image recognition method based on multi-layer feature fusion convolutional network. Ecological Informatics, 2022; 72: 101873.
Xia Y, Che T C, Meng J W, Hu J H, Qiao G L, Liu W B, et al. Detection of surface defects for maize seeds based on YOLOv5. Journal of Stored Products Research, 2024; 105: 102242.
Fu K R, Fan D P, Ji G P, Zhao Q J, Shen J B, Zhu C. Siamese network for RGB-D salient object detection and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021; 44(9): 5541–5559.
Li C Y, Cong R M, Piao Y R, Xu Q Q, Loy C C. RGB-D salient object detection with cross-modality modulation and selection. In: Computer Vision - ECCV, 2020; 12353: 225–241.
Gao S H, Cheng M M, Zhao K, Zhang X Y, Yang M H, Torr P. Res2Net: A new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019; 43(2): 652–662.
Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W J, Weyand T, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint, 2017; arXiv: 1704.04861.
Kingma D P, Ba J L. Adam: A method for stochastic optimization. In: ICLR 2015. 2015.
Fan D P, Cheng M M, Liu Y, Li T, Borji A. Structure-measure: A new way to evaluate foreground maps. In: 2017 IEEE International Conference on Computer Vision (ICCV), 2021; pp.4558–4567. doi: 10.1109/ICCV.2017.487.
Fan D P, Gong C, Cao Y, Ren B, Cheng M M, Borji A, et al. Enhanced alignment measure for binary foreground map evaluation. In: IJCAI, 2018: Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018; pp.698–704. doi: 10.24963/ijcai.2018/97.
Margolin R, Zelinik-Manor L, Tal A. How to evaluate foreground maps. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus: IEEE, 2014; pp.248–255. doi: 10.1109/CVPR.2014.39.
Perazzi F, Krähenbühl P, Pritch Y, Hornung A. Saliency filters: Contrast based filtering for salient region detection. 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012: 733–740. doi: 10.1109/CVPR.2012.6247743.
Hand D, Christen P. A note on using the F-measure for evaluating record linkage algorithms. Statistics and Computing, 2018; 28: 539–547.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.