Multi-scale monitoring for hazard level classification of brown planthopper damage in rice using hyperspectral technique
Abstract
Keywords: brown planthopper (BPH), hazard level classification, hyperspectral technique, rice canopy, rice stem, fusion information
DOI: 10.25165/j.ijabe.20241706.9199
Citation: Liao J, Tao W Y, Liang1 Y X, He X Y, Wang H, Zeng H Q, et al. Multi-scale monitoring for hazard level classification of brown planthopper damage in rice using hyperspectral technique. Int J Agric & Biol Eng, 2024; 17(6): 202-211 .
Keywords
Full Text:
PDFReferences
Kang K, Yue L, Xia X, Liu K, Zhang W Q. Regulatory function of the trehalose‐6‐phosphate synthase gene TPS3 on chitin metabolism in brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2022; 31(2): 241-250. DOI: 10.1111/imb.12754
Min S, Lee S W, Choi B R, Lee S H, Kwon D H. Insecticide resistance monitoring and correlation analysis to select appropriate insecticides against Nilaparvata lugens (Stl), a migratory pest in Korea. Journal of Asia-Pacific Entomology, 2014; 17(4): 711-716. DOI: 10.1016/j.aspen.2014.07.005
Gomez-Chova L, Calpe J, Camps-Valls G, Martín J D, Soria E, Vila J, et al. Feature selection of hyperspectral data through local correlation and SFFS for crop classification. IEEE International Geoscience & Remote Sensing Symposium. IEEE, 2003; pp.555-557.
Liang K, Ren Z Z, Song J P, Yuan R, Zhang Q. Wheat FHB resistance assessment using hyperspectral feature bandimage fusion and deep learning. Int J Agric & Biol Eng, 2024; 17(2): 240–249. DOI: 10.25165/j.ijabe.20241702.8269
Carter G A, Miller R L. Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands. Remote Sensing of Environment, 1994; 50: 295-302.
Delalieux S, Somers B, Verstraeten W W, Van Aardt J A N, Keulemans W, Coppin P. Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. International Journal of Remote Sensing, 2009; 30(8): 1887-1912. DOI: 10.1080/01431160802541556
Prasannakumar N R, Chander S, Sahoo R N, Gupta V K. Assessment of Brown Planthopper, (Nilaparvata lugens) [Stl], damage in rice using hyperspectral remote sensing. Pans Pest Articles & News Summaries, 2013; 59(3): 180-188. DOI: 10.1080/09670874.2013.808780
Prasannakumar N R, Chander S, Sahoo R N. Characterization of brown planthopper damage on rice crops through hyperspectral remote sensing under field conditions. Phytoparasitica, 2014; 42(3): 387-395. DOI: 10.1007/s12600-013-0375-0
Huang J R, Sun J Y, Liao H J, Liu X D. Detection of brown planthopper infestation based on SPAD and spectral data from rice under different rates of nitrogen fertilizer. Precision Agriculture, 2015; 16(2): 148-163. DOI: 10.1007/s11119-014-9367-4
Tan Y, Sun J Y, Zhang B, Chen M, Liu Y, Liu X D. Sensitivity of a ratio vegetation index derived from hyperspectral remote sensing to the brown planthopper stress on rice plants. Sensors, 2019; 19(375). DOI: 10.3390/s19020375
Sōgawa K. The rice brown planthopper: Feeding physiology and host plant interactions. Annual Review of Entomology, 1982; 27: 49-73. DOI: 10.1146/annurev.en.27.010182.000405
Nault B A, Taylor A G, Urwiler M, Rabaey T, Hutchison W D. Neonicotinoid seed treatments for managing potato leafhopper infestations in snap bean. Crop Protection, 2004; 23(2): 147–154. DOI: 10.1016/j.cropro.2003.08.002
Liu Y, Liu S, Xu J, Kong X, Xie L, Chen Y, et al. Forest pest identification based on a new dataset and convolutional neural network model with enhancement strategy. Computers and Electronics in Agriculture, 2002; 192: 1-14. DOI: 10.1016/j.compag.2021.106625
Wang K, Chen K, Du H, Liu S, Xu J, Zhao J, Chen H, Liu Y. New image dataset and new negative sample judgment method for crop pest recognition based on deep learning models. Ecological informatics: an International Journal on Ecoinformatics and Computational Ecology, 2002; 69. DOI:10.1016/j.ecoinf.2022.101620
Erfani S M, Rajasegarar S, Karunasekera S, Leckie C. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognition, 2016; 58(C): 121-134. Doi: 10.1016/j.patcog.2016.03.0
Guo W J, Feng S, Feng Q, Li X Z, Gao X Z. Cotton leaf disease detection method based on improved SSD. Int J Agric & Biol Eng, 2024; 17(2): 211-220. DOI: 10.25165/j.ijabe.20241702.8574
Chen C L P, Liu Z. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Transactions on Neural Networks & Learning Systems, 2018; 29(99): 10-24. DOI: 10.1109/TNNLS.2017.2716952
Yasuda T, Bateni M H, Chen L, Fahrbach M, Fu G, Mirrokni V. Sequential attention for feature selection. arXiv e-prints. ICLR, Kigali Rwanda, 2023. DOI: 10.48550/arXiv.2209.14881
Borzov S M, Potaturkin O I. Increasing the classification efficiency of hyperspectral images due to multi-scale spatial processing. Computer Optics, 2020; 44(6): 937-943. DOI: 10.18287/2412-6179-co-779
Sun J, Yang W, Zhang M, Feng M, Ding G. Estimation of water content in corn leaves using hyperspectral data based on fractional order Savitzky-Golay derivation coupled with wavelength selection. Computers and Electronics in Agriculture, 2021; 182(1). DOI: 10.1016/j.compag.2021.105989
Zimmermann B, Kohler A. Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrared spectroscopy. Appl Spectrosc, 2013; 67(8): 892-902. DOI: 10.1366/12-06723
Wold S, Esbensen K, Geladi P. Principal component analysis, Chemometr. Intell. Lab. Syst, 1987; 2(1987): 37–52.
Hervé A, Williams L J. Principal component analysis. Wiley Interdisciplinary Reviews Computational Statistics, 2010; 2(4): 433-459.
Beattie J R, Esmonde-White F W L. Exploration of principal component analysis: deriving principal component analysis visually using spectra. Applied Spectroscopy, 2021; 75(4): 361-375. DOI: 10.1177/0003702820987847
Rodionova O, Kucheryavskiy S, Pomerantsev A. Efficient tools for principal component analysis of complex data—A tutorial. Chemometrics and Intelligent Laboratory Systems, 2021; 213: 1-11. DOI: 10.1016/j.chemolab.2021.104304
Saloni K, Deepika K, Mamta M. An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier - ScienceDirect. International Journal of Cognitive Computing in Engineering, 2021; 2: 40-46. DOI: 10.1016/j.ijcce.2021.01.001
Machart P, Ralaivola L. Confusion matrix stability bounds for multiclass classification. Computer Science, 2012; 1-11. DOI:10.48550/arXiv.1202.6221
Simon D, Simon D L. Analytic confusion matrix bounds for fault detection and isolation using a sum-of-squared-residuals approach. IEEE Transactions on Reliability, 2021; 59(2): 287-296. DOI: 10.1109/TR.2010.2046772
Paulino J L C, Almirol L C A, Favila J M C, Aquino K A G L, Cruz A H D L, Roxas R. Multilingual sentiment analysis on short text document using semi-supervised machine learning. 5th International Conference on E-Society, E-Education and E-Technology, 2021. DOI: 10.1145/3485768.3485775
Hasnain M, Pasha M F, Ghani I, Imran M, Alzahrani M Y, Budiarto R. Evaluating trust prediction and confusion matrix measures for web services ranking. IEEE Access, 2020; 8: 90847-90861. DOI: 10.1109/ACCESS.2020.2994222
Lydia A, Meena K, Sekar R R, Swaminathan J N. Parkinson's disease prediction through machine learning techniques. In: Chen J I Z, Wang H, Du K L, Suma V (eds.) Machine Learning and Autonomous Systems. Smart Innovation, Systems and Technologies, 269. Springer, Singapore, 2022.
Caelen O. A Bayesian interpretation of the confusion matrix. Ann. Math. Artif. Intell, 2017; 81(3-4): 429-450. DOI: 10.1007/s10472-017-9564-8
Rajalakshmi R, Aravindan C. A Naive Bayes approach for URL classification with supervised feature selection and rejection framework. Computational Intelligence, 2018; 34(1): 363-396. DOI: 10.1111/coin.12158
Popescu S A, Marilena J N. First-order differential equations. in: advanced mathematics for engineers and physicists. Springer, Cham, 2022.
Cotter S F, Adler R, Kreutz-Delgado K. Forward sequential algorithms for best basis selection. Vision Image & Signal Processing IEE Proceedings, 1999.
Ramirez S, Lizarazo I. Decision tree classification model for detecting and tracking precipitating objects from series of meteorological images. Semantic Scholar, 2016. DOI: 10.3990/2.384
Bruzzone L, Chi M, Marconcini M. A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Transactions on Geoscience & Remote Sensing, 2006; 44: 3363-3373. DOI: 10.1109/TGRS.2006.877950
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.